Context: Li-Fraumeni syndrome (LFS), characterized by predisposition to early onset of a variety of malignancies, is usually associated with germline mutation of the tumor-suppressor gene, TP53. Mutation carriers are at increased risk of multiple primary tumors, many of which arise in previous radiation-therapy sites. In patients with LFS, acute myeloid leukemia is uncommon and myelodysplastic syndrome (MDS) is rare.
Objective: To evaluate the morphologic, cytogenetic, and molecular diagnostic findings of 3 unique cases of MDS arising in patients with germline TP53 mutation, 2 with classic LFS.
Design: We searched the Li-Fraumeni Syndrome Registry in the Department of Genetics at the University of Texas M. D. Anderson Cancer Center (Houston, Texas) and identified 3 patients with documented germline TP53 mutations or LFS who had developed MDS during a period of 6 years (2000-2005). The clinical, cytogenetic, and molecular diagnostic data and bone marrow aspirate smears and biopsies on all patients were reviewed. Immunohistochemical staining with antibody to p53 was also performed.
Results: Two patients met the criteria for classic LFS; one had no history of malignancy in first-degree relatives. The MDS followed chemotherapy and radiation therapy and progressed to acute myeloid leukemia in 2 patients. Cytogenetic analysis demonstrated chromosome 5 abnormalities in a complex karyotype in all cases. Two patients died, one of acute myeloid leukemia and one with glioblastoma multiforme, MDS, and persistent pancytopenia.
Conclusions: Patients with LFS may develop MDS, which is most likely therapy-related and is associated with cytogenetic markers of poor prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5858/2009-0015-OA.1 | DOI Listing |
PLoS Genet
January 2025
Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel.
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.
View Article and Find Full Text PDFJ Med Genet
January 2025
Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
Background: Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.
View Article and Find Full Text PDFHum Genomics
January 2025
Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.
View Article and Find Full Text PDFExp Ther Med
February 2025
Molecular Pathology, Azienda USL-IRCCS di Reggio Emilia, I-42123 Reggio Emilia, Italy.
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors with an annual incidence of ~2 cases per million worldwide. The hereditary form is more likely to present in younger patients. To date, PPGL is considered a complex pathology that is difficult to diagnose.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, SE-171 77, Stockholm, Sweden.
We aimed to describe the clinical characteristics of families with heritable TP53-related cancer (hTP53rc) syndrome in Sweden with class 4 and 5 germline TP53 variants (gTP53), and to evaluate the genotype-phenotype correlation. These results were also used to evaluate our previously published phenotype prediction model based on TP53 missense variants and their impact on protein conformation. 90 families with hTP53rc were initially identified in Sweden.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!