Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats.

Pharm Res

Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.

Published: September 2010

Purpose: To investigate the effect of crystal size on the dissolution and oral absorption of nitrendipine, a poorly soluble drug, in rats.

Methods: Five types of nitrendipine crystal suspensions with different particle sizes (200 nm, 620 nm, 2.7 microm, 4.1 microm, 20.2 microm) were prepared either by the precipitation-ultrasonication or the anti-solvent precipitation method. The simulated intestinal fluid in the fasted state (FaSSIF) was selected as the dissolution medium, and the dissolution behaviors of different nitrendipine crystals were simulated based on a Noyes-Whitney type equation. The in vivo absorption and the absolute bioavailability of the different nitrendipine crystals were evaluated in Wistar rats.

Results: The dissolution rate of nitrendipine was significantly increased by a reduction in particle size. The dissolution test in FaSSIF could discriminate between the differences in the dissolution rates of the different particle sizes, and the simulated results were in agreement with the observed dissolution curves. From the simulated T(50%) values (50% dissolution time), the dissolution rates of crystals with particle sizes of 200 nm, 620 nm, 2.7 microm, 4.1 microm and 20.2 microm were calculated to be 5.1 x 10(4), 1.0 x 10(4), 237, 64 and 11-fold greater than that of the raw crystals and resulted in absolute bioavailability of 61.4% 51.5%, 29.4%, 26.7%, 24.7%, respectively. The reduction in the drug particle size correlated well with incremental improvements in oral absorption. A good linear relationship was observed between the Log (T(50%)) and the absolute bioavailability of nitrendipine.

Conclusions: The dissolution rate and the oral bioavailability of nitrendipine were significantly affected by the crystal size, and the oral bioavailability could be improved significantly by preparing it as nanocrystals. FaSSIF can be used to predict differences in oral absorption of crystals with different particle sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-010-0200-0DOI Listing

Publication Analysis

Top Keywords

oral absorption
16
particle sizes
16
crystal size
12
absolute bioavailability
12
dissolution
11
dissolution oral
8
absorption nitrendipine
8
size dissolution
8
nitrendipine crystal
8
sizes 200
8

Similar Publications

Pizuglanstat is a novel hematopoietic prostaglandin D synthase inhibitor and investigational treatment for Duchenne muscular dystrophy. This Phase 1 mass balance study aimed to characterize the absorption, metabolism, and excretion of carbon-14 (C)-labeled pizuglanstat in healthy adults (ClinicalTrials.gov, NCT04825431).

View Article and Find Full Text PDF

Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).

View Article and Find Full Text PDF

Enteral administration of vancomycin is the standard treatment for () colitis and is presumed to have no systemic absorption. In critically ill patients, however, especially with multi-organ failure, enteral absorption of vancomycin is unpredictable and can cause severe toxicity if it remains unrecognized. We therefore report a case of systemic absorption of enteric vancomycin in a patient with severe colitis.

View Article and Find Full Text PDF

Ulcerative colitis and Crohn's disease, two types of inflammatory bowel disease (IBD), often cause anemia, primarily due to iron deficiency and chronic inflammation. Anemia negatively affects patients' daily functioning and quality of life, causing symptoms including headaches, exhaustion, and dyspnea. In IBD, iron deficiency arises from reduced intake, chronic blood loss, and impaired absorption.

View Article and Find Full Text PDF

Impact of Food Physical Properties on Oral Drug Absorption: A Comprehensive Review.

Drug Des Devel Ther

January 2025

Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.

Food-Drug Interaction (FDI) refers to the phenomenon where food affects the pharmacokinetic or pharmacodynamic characteristics of a drug, significantly altering the drug's absorption rate or absorption extent. These Interactions are considered as a primary determinant in influencing the bioavailability of orally administered drugs within the gastrointestinal tract. The impact of food on drug absorption is complex and multifaceted, potentially involving alterations in gastrointestinal physiology, increases in splanchnic blood flow rates, and shifts in the gut microbiota's composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!