Following anatomic double-bundle anterior cruciate ligament (ACL) reconstruction with hamstring tendon autografts, 38 consecutive patients were evaluated with high-speed three-dimensional computed tomography. Scans were performed within 3 days following surgery. The length and width of the reconstructed ACL footprint were measured on axial images. Then, 3D images were converted into 2D with radiologic density for measurement purposes. Tunnel orientation was measured on AP and lateral views. In the sagittal plane, the center of the anteromedial (AMB) and posterolateral bundle (PLB) tibial attachment positions was calculated as the ratio between the geometric insertion sites with respect to the sagittal diameter of the tibia. In addition, the length from the anterior tibial plateau to the retro-eminence ridge was measured; the relationship of this line with the centers of the AM and PL tunnels was then measured. The AP length of the reconstructed footprint was 17.1 mm ± 1.9 mm and the width 7.3 mm ± 1.2 m. The distance from retro-eminence ridge to center of AM tunnel was 18.8 mm ± 2.8 mm, and the distance from RER to center of PL tunnel was 8.7 mm ± 2.6 mm. The distance between tunnels center was 10.1 mm ± 1.7 mm. There were no significant differences between the intra- and inter-observer measurements. The bone bridge thickness was 2.1 mm ± 0.8 mm. In the sagittal plane, the centers of the tunnel apertures were located at 35.7% ± 6.7% and 53.7% ± 6.8% of the tibia diameter for the AMB and PLB, respectively. The surface areas of the tunnel apertures were 46.3 mm(2) ± 4.4 mm(2) and 36.3 mm(2) ± 4.0 mm(2) for the AM and PL tunnels, respectively. The total surface area occupied by both tunnels was 82.6 mm(2) ± 7.0 mm(2). In the coronal plane, tunnel orientation showed the AM tunnel was more vertical than the PL tunnel with a 10° divergence (14.8° vs. 24.1°). In the sagittal plane, both tunnels were almost parallel (29.9° and 25.4° for the AM and PL tunnels, respectively). When using anatomic aimers, the morphometric parameters of the reconstructed tibial footprint in terms of length and distances to the surrounding bony landmarks were similar to the native ACL tibial footprint. However, the native footprint width was not restored, and the surface area of the two tunnel apertures was in the lower range of the published values for the native footprint area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00167-010-1189-y | DOI Listing |
JBJS Essent Surg Tech
January 2025
The Ohio State University College of Medicine, Columbus, Ohio.
Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.
Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).
Purpose: To clarify the femoral tunnel location for a virtual anterior cruciate ligament (ACL) graft to simulate the native ACL.
Methods: Three-dimensional (3D) computed tomography (CT) and magnetic resonance imaging (MRI) were obtained in 14 normal knees in full extension. Two types of virtual triple bundle ACL grafts (VACLG) were created.
Indian J Orthop
January 2025
Department of Orthopaedics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneshwar, Odisha 751024 India.
Background: Anatomic single-bundle ACL reconstruction (ACLR) produces good results when the graft and tunnel are positioned in the anatomic footprint on the femoral and tibial insertion sites in a more oblique orientation. The of the knee and its biomechanical role in controlling rotational laxity, internal rotation, and pivot shift has led to adding adjunctive procedures like extra-articular augmentation and lateral extra-articular tenodesis (LET) to decrease rotational laxity. We prospectively analyzed young adults with rotational instability and generalized laxity undergoing an arthroscopic single bundle ACLR with an additional LET procedure.
View Article and Find Full Text PDFRev Bras Ortop (Sao Paulo)
December 2024
Serviço de Ortopedia, Centro Hospitalar do Tâmega e Sousa, Penafiel, Portugal.
The original LaPrade technique for anatomic reconstruction of the posterolateral corner of the knee uses two separate allografts. More recently, a modification of this technique, using an adjustable-length suspension device with a cortical button for tibial fixation, allows anatomic reconstruction with a single semitendinosus autograft. This modification is of utmost relevance when sources of allograft are not available for multiligament knee reconstruction.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
December 2024
Department of Orthopaedic Surgery and Traumatology, Hospital and University of Fribourg, Fribourg, Switzerland.
Purpose: In modern anterior cruciate ligament (ACL) surgery, the focus is usually on anatomical reconstruction to restore the natural kinematics of the knee. The individual optimal positioning of the ACL footprints (FPs) in primary surgery is still controversial and, especially in revision surgery, difficult to realize surgically. In this regard, a new MRI-based sequence, the Compressed Lateral and anteroposterior Anatomic Systematic Sequence (CLASS) with marked femoral and tibial FPs as a template, could help.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!