Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen (3/4) fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886829PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011043PLOS

Publication Analysis

Top Keywords

triple helical
12
direct visualization
8
collagen
8
enzymatic processing
8
matrix proteases
8
ecm substrates
8
helical collagen
8
collagen fragments
8
protease
5
visualization protease
4

Similar Publications

Noncanonical base pairs play an important role in enabling the structural and functional complexity of RNA. Molecular recognition of such motifs is challenging because of their diversity, significant deviation from the Watson-Crick structures, and dynamic behavior, resulting in alternative conformations of similar stability. Triplex-forming peptide nucleic acids (PNAs) have emerged as excellent ligands for the recognition of Watson-Crick base-paired double helical RNA.

View Article and Find Full Text PDF

Diffusion model assisted designing self-assembling collagen mimetic peptides as biocompatible materials.

Brief Bioinform

November 2024

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China.

Collagen self-assembly supports its mechanical function, but controlling collagen mimetic peptides (CMPs) to self-assemble into higher-order oligomers with numerous functions remains challenging due to the vast potential amino acid sequence space. Herein, we developed a diffusion model to learn features from different types of human collagens and generate CMPs; obtaining 66% of synthetic CMPs could self-assemble into triple helices. Triple-helical and untwisting states were probed by melting temperature (Tm); hence, we developed a model to predict collagen Tm, achieving a state-of-art Pearson's correlation (PC) of 0.

View Article and Find Full Text PDF

There are surprisingly few RNA intramolecular triple helices known in the human transcriptome. The structure has been most well-studied as a stability-element at the 3' end of lncRNAs such as and , but the intrigue remains whether it is indeed as rare as it is understood to be or just waiting for a closer look from a new vantage point. TRIPinRNA, our Python-based in silico platform, allows for a comprehensive sequence-pattern search for potential triplex formation in the human transcriptome─noncoding as well as coding.

View Article and Find Full Text PDF

Effects of aging on the fine structure, chain conformation, and morphology of Chenpi polysaccharides.

Carbohydr Polym

February 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China. Electronic address:

The aging process endows Chenpi (Pericarpium Citri Reticulatae) with unique value and efficacy. This study investigated the dynamic changes in the fine structure, chain conformation, and morphology of water-soluble polysaccharides from Chenpi over time. In the initial storage period of Chenpi (1 year), Chenpi polysaccharides (CP) exhibited a triple-helical structure, with chains entangled and aggregated into rough spherical conformations.

View Article and Find Full Text PDF

Collagen type II fibrils provide structural integrity to the articular cartilage extracellular matrix. However, the conditions that control the fibril radial size scale, distribution, and formation inside of dense networks are not well understood. We have investigated how surrounding elastic networks affect fibril formation by observing the structure and dynamics of collagen type II in model polyacrylamide gels of varying moduli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!