Conduct disorder (CD) is one of the most prevalent childhood psychiatric conditions, and is associated with a number of serious concomitant and future problems. CD symptomatology is known to have a considerable genetic component, with heritability estimates in the range of 50%. Despite this, there is a relative paucity of studies aimed at identifying genes involved in the susceptibility to CD. In this study, we report results from a genome-wide association study of CD symptoms. CD symptoms were retrospectively reported by a psychiatric interview among a sample of cases and controls, in which cases met the criteria for alcohol dependence. Our primary phenotype was the natural log transformation of the number of CD symptoms that were endorsed, with data available for 3963 individuals who were genotyped on the Illumina Human 1M beadchip array. Secondary analyses are presented for case versus control status, in which caseness was established as endorsing three or more CD symptoms (N = 872 with CD and N = 3091 without CD). We find four markers that meet the criteria for genome-wide significance (P<5 × 10(-8)) with the CD symptom count, two of which are located in the gene C1QTNF7 (C1q and tumor necrosis factor-related protein 7). There were six additional SNPs in the gene that yielded converging evidence of association. These data provide the first evidence of a specific gene that is associated with CD symptomatology. None of the top signals resided in traditional candidate genes, underscoring the importance of a genome-wide approach for identifying novel variants involved in this serious childhood disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580835PMC
http://dx.doi.org/10.1038/mp.2010.73DOI Listing

Publication Analysis

Top Keywords

genome-wide association
8
association study
8
conduct disorder
8
study conduct
4
disorder symptomatology
4
symptomatology conduct
4
disorder prevalent
4
prevalent childhood
4
childhood psychiatric
4
psychiatric conditions
4

Similar Publications

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.

Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.

View Article and Find Full Text PDF

Objective: To investigate the causal influence of gut microbiota on small cell lung cancer (SCLC) progression using Mendelian randomisation (MR), providing insights into the gut-lung axis in lung cancer pathology.

Study Design: Analytical study. Place and Duration of the Study: Department of Radiotherapy, Binhai County People's Hospital, Yancheng, Jiangsu, China, and Department of Paediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China, from January to May 2024.

View Article and Find Full Text PDF

The interplay of sex and genotype in disease associations: a comprehensive network analysis in the UK Biobank.

Hum Genomics

January 2025

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Richards Building B304, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.

Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!