Anti-CD40L immunotherapy in systemic lupus erythematosus patients was associated with thromboembolism of unknown cause. We previously showed that monoclonal anti-CD40L immune complexes (ICs) activated platelets in vitro via the IgG receptor (FcgammaRIIa). In this study, we examined the prothrombotic effects of anti-CD40L ICs in vivo. Because mouse platelets lack FcgammaRIIa, we used FCGR2A transgenic mice. FCGR2A mice were injected i.v. with preformed ICs consisting of either anti-human CD40L mAb (M90) plus human CD40L, or a chimerized anti-mouse CD40L mAb (hMR1) plus mouse CD40L. ICs containing an aglycosylated form of hMR1, which does not bind FcgammaRIIa, were also injected. M90 IC caused shock and thrombocytopenia in FCGR2A but not in wild-type mice. Animals injected with hMR1 IC also experienced these effects, whereas those injected with aglycosylated-hMR1 IC did not, demonstrating that anti-CD40L IC-induced platelet activation in vivo is FcgammaRIIa-dependent. Sequential injections of individual IC components caused similar effects, suggesting that ICs were able to assemble in circulation. Analysis of IC-injected mice revealed pulmonary thrombi consisting of platelet aggregates and fibrin. Mice pretreated with a thrombin inhibitor became moderately thrombocytopenic in response to anti-CD40L ICs and had pulmonary platelet-thrombi devoid of fibrin. In conclusion, we have shown for the first time that anti-CD40L IC-induced thrombosis can be replicated in mice transgenic for FcgammaRIIa. This molecular mechanism may be important for understanding thrombosis associated with CD40L immunotherapy. The FCGR2A mouse model may also be useful for assessing the hemostatic safety of other therapeutic Abs.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0903888DOI Listing

Publication Analysis

Top Keywords

anti-cd40l immune
8
immune complexes
8
platelets vitro
8
fcgr2a transgenic
8
transgenic mice
8
anti-cd40l ics
8
cd40l mab
8
anti-cd40l ic-induced
8
anti-cd40l
7
mice
7

Similar Publications

Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.

View Article and Find Full Text PDF

Background: The interaction of CD40L and its receptor CD40 on activated T cells and B cells respectively control pro-inflammatory activation in the pathophysiology of autoimmunity and transplant rejection. Previous studies have implicated signaling pathways involving CD40L (interchangeably referred to as CD154), as well as adaptive and innate immune cell activation, in the induction of neuroinflammation in neurodegenerative diseases. This study aimed to assess the safety, tolerability, and impact on pro-inflammatory biomarker profiles of an anti CD40L antibody, tegoprubart, in individuals with amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

The blockade of the CD40/CD40L immune checkpoint is considered essential for cardiac xenotransplantation. However, it is still unclear which single antibody directed against CD40 or CD40L (CD154), or which combination of antibodies, is better at preventing organ rejection. For example, the high doses of antibody administered in previous experiments might not be feasible for the treatment of humans, while thrombotic side effects were described for first-generation anti-CD40L antibodies.

View Article and Find Full Text PDF

Inhibition of CD40L with Frexalimab in Multiple Sclerosis.

N Engl J Med

February 2024

From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.).

Background: The CD40-CD40L costimulatory pathway regulates adaptive and innate immune responses and has been implicated in the pathogenesis of multiple sclerosis. Frexalimab is a second-generation anti-CD40L monoclonal antibody being evaluated for the treatment of multiple sclerosis.

Methods: In this phase 2, double-blind, randomized trial, we assigned, in a 4:4:1:1 ratio, participants with relapsing multiple sclerosis to receive 1200 mg of frexalimab administered intravenously every 4 weeks (with an 1800-mg loading dose), 300 mg of frexalimab administered subcutaneously every 2 weeks (with a 600-mg loading dose), or the matching placebos for each active treatment.

View Article and Find Full Text PDF

Introduction: Prophylactic strategies to prevent the development of allergies by establishing tolerance remain an unmet medical need. We previously reported that the transfer of autologous hematopoietic stem cells (HSC) expressing the major timothy grass pollen allergen, Phl p 5, on their cell surface induced allergen-specific tolerance in mice. In this study, we investigated the ability of allergen-expressing immune cells (dendritic cells, CD4 T cells, CD8 T cells, and CD19 B cells) to induce allergen-specific tolerance in naive mice and identified CD19 B cells as promising candidates for allergen-specific cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!