The transcription factor TonEBP/OREBP promotes cell survival during osmotic stress. High NaCl-induced phosphorylation of TonEBP/OREBP at tyrosine-143 was known to be an important factor in increasing its activity in cell culture. We now find that TonEBP/OREBP also is phosphorylated at tyrosine-143 in rat renal inner medulla, dependent on the interstitial osmolality. c-Abl seemed likely to be the kinase that phosphorylates TonEBP/OREBP because Y143 is in a consensus c-Abl phosphorylation site. We now confirm that, as follows. High NaCl increases c-Abl activity. Specific inhibition of c-Abl by imatinib, siRNA, or c-Abl kinase dead drastically reduces high NaCl-induced TonEBP/OREBP activity by reducing its nuclear location and transactivating activity. c-Abl associates with TonEBP/OREBP (coimmunoprecipitation) and phosphorylates TonEBP/OREBP-Y143 both in cell and in vitro. High NaCl-induced activation of ataxia telangiectasia mutated, previously known to contribute to activation of TonEBP/OREBP, depends on c-Abl activity. Thus, c-Abl is the kinase responsible for high NaCl-induced phosphorylation of TonEBP/OREBP-Y143, which contributes to its increased activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974425PMC
http://dx.doi.org/10.1096/fj.10-157362DOI Listing

Publication Analysis

Top Keywords

high nacl-induced
20
nacl-induced phosphorylation
12
c-abl kinase
12
c-abl
9
transcription factor
8
tonebp/orebp
8
factor tonebp/orebp
8
c-abl activity
8
activity c-abl
8
high
6

Similar Publications

NaCl-induced effects on photosynthesis, ion relations, and growth of Chloris gayana Kunth in the presence of two levels of KCl.

Plant Physiol Biochem

November 2024

Universidade Federal do Rio de Janeiro/IB, Postgraduate Program in Plant Biotechnology, Av. Carlos Chagas Filho, 373 - Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil.

Soil salinization is a widespread environmental problem that impacts agriculture. Potassium fertilization is often associated with stress mitigation. Aiming to identify the ability of Rhodes grass (Chloris gayana Kunth) to cope with high salt as well as to investigate the potential of K fertilization to alleviate stress symptoms, we investigated the combined effects of NaCl and KCl on photosynthesis, ion distribution, and growth of two Rhodes grass cultivars, Callide and Reclaimer.

View Article and Find Full Text PDF

Sodium treatment caused the sodium ion accumulation at the milk stage of immature rice grains which in turn triggered the overproduction of reactive oxygen species and oxidative damage. The tolerant cultivar showed an enhanced antioxidative response and induced expressions of OsNHX and OsHKT ion-transporters. Sodium chloride-(NaCl) induced soil salinity is a major constraint hindering global rice production.

View Article and Find Full Text PDF

High salinity reduces agriculture production and quality, negatively affecting the global economy. Zinc oxide nanoparticles (ZnO-NPs) enhance plant metabolism and abiotic stress tolerance. This study investigated the effects of 2 g/L foliar Zinc oxide NPs on L.

View Article and Find Full Text PDF

The tropical marine actinomycete Nocardiopsis dassonvillei NCIM 5124 as novel source of ectoine: Genomic and transcriptomic insights.

Gene

December 2024

Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, India. Electronic address:

Since ectoine is a high-value product, overviewing strategies for identifying novel microbial sources becomes relevant. In the current study, by following a genome mining approach, the ectoine biosynthetic cluster in a tropical marine strain of Nocardiopsis dassonvillei (NCIM 5124) was located and compared with related organisms. Transcriptome analysis of Control and Test samples (with 0 and 5% NaCl, respectively) was carried out to understand salt induced stress response at the molecular level.

View Article and Find Full Text PDF

Development of a "Signal-On" Fluorescent Aptasensor for Highly Selective and Sensitive Detection of ZEN in Cereal Products Using Nitrogen-Doped Carbon Dots Based on the Inner Filter Effect.

Biosensors (Basel)

July 2024

Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

This study aimed to develop a novel fluorescent aptasensor for the quantitative detection of zearalenone (ZEN), addressing the limitations of conventional detection techniques in terms of speed, sensitivity, and ease of use. Nitrogen-doped carbon dots (N-CDs) were synthesized via the hydrothermal method, resulting in spherical particles with a diameter of 3.25 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!