Antimicrobial polypeptides (AMPPs), consisting of peptides and small proteins with antimicrobial activity, are an integral component of innate immunity. Their often potent properties and widespread prevalence in fish suggests that designing means of manipulating their levels has considerable potential for maintaining or improving fish health. There is evidence that a number of chronic stresses lead to significant downregulation of AMPPs and thus their monitoring could be a highly sensitive measure of health status and risk of an infectious disease outbreak. Conversely, upregulation of AMPP expression could be used to enhance disease resistance in stressful environments, as well as improve the efficacy of traditional antimicrobial drugs. However, further work is required in linking levels of a number of AMPPs to physiological function since, while a number of studies have documented the down- or upregulation of AMPPs via gene expression, relatively few studies have quantitatively examined changes in protein expression. In addition, not all AMPPs appear to be expressed at microbicidal levels in vivo, suggesting that at least some may have functions other than being directly protective. Nonetheless, in fish, there is evidence that some constitutively expressed AMPPs, such as piscidins and histone-like proteins, are expressed at microbicidal levels and that they decline with stress. Furthermore, certain AMPPs derived from hemoglobin-β are upregulated to microbicidal levels after experimental challenge. The likely widespread distribution of these three AMPP groups in fish provides the opportunity to design strategies to greatly improve the health of cultured fish populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2010.06.001DOI Listing

Publication Analysis

Top Keywords

microbicidal levels
12
expressed microbicidal
8
ampps
7
fish
5
levels
5
application antimicrobial
4
antimicrobial polypeptide
4
polypeptide host
4
host defenses
4
defenses aquaculture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!