The ability to image and ultimately quantitate beta-cell mass in vivo will likely have far reaching implications in the study of diabetes biology, in the monitoring of disease progression or response to treatment, and for drug development. Here, using animal models, we report on the synthesis, characterization, and intravital microscopic imaging properties of a near-infrared fluorescent exendin-4 analogue with specificity for the GLP-1 receptor on beta cells (E4(K12)-Fl). The agent demonstrated subnanomolar EC(50) binding concentrations, with high specificity and binding that could be inhibited by GLP-1R agonists. Following intravenous administration to mice, pancreatic islets were readily distinguishable from exocrine pancreas, achieving target-to-background ratios within the pancreas of 6:1, as measured by intravital microscopy. Serial imaging revealed rapid accumulation kinetics (with initial signal within the islets detectable within 3 min and peak fluorescence within 20 min of injection), making this an ideal agent for in vivo imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912453PMC
http://dx.doi.org/10.1021/bc100184wDOI Listing

Publication Analysis

Top Keywords

near-infrared fluorescent
8
beta cells
8
fluorescent probe
4
imaging
4
probe imaging
4
imaging pancreatic
4
pancreatic beta
4
cells ability
4
ability image
4
image ultimately
4

Similar Publications

Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.

A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.

View Article and Find Full Text PDF

The number of cases of Alzheimer's disease (AD) characterized by progressive amnestic syndrome is dramatically increased with population aging. It is urgent to detect and diagnose this disease early. The state of amyloid-beta protein 1-42 (Aβ) was commonly regarded as a hallmark for early diagnosis of AD.

View Article and Find Full Text PDF

Optical molecular imaging in oral- and oropharyngeal squamous cell carcinoma using a novel uPAR-targeting near-infrared imaging agent FG001 (ICG-Glu-Glu-AE105): An explorative phase II clinical trial.

Theranostics

January 2025

Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (CMI), Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark.

: In oral and oropharyngeal squamous cell carcinoma (OSCC, OPSCC), frequent inadequate surgical margins highlight the importance of precise intraoperative identification and delineation of cancerous tissue for improving patient outcomes. : A prospective, open-label, single-center, single dose, exploratory phase II clinical trial (EudraCT 2022-001361-12) to assess the efficacy of the novel uPAR-targeting near-infrared imaging agent, FG001, for intraoperative detection of OSCC and OPSCC. Macroscopic tumor detection was quantified with sensitivity and intraoperative tumor-to-background ratio (TBR).

View Article and Find Full Text PDF

A H2S-activated NIR-II imaging probe for precise diagnosis and pathological evaluation of colorectal tumor.

Theranostics

January 2025

Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China.

The quick and accurate detection of colorectal cancer (CRC) is essential for improving the treatment efficacy and patient survival, which nevertheless remains challenging due to low specificity and sensitivity of current CRC diagnostic approaches. Therefore, providing a robust solution for real-time and accurate tumor delineation is highly desirable. We report a novel polyacrylic acid-mediated strategy to develop the endogenous hydrogen sulfide (HS)-activated NIR-II probe DCNP@PB for specific visualization of CRC and image-guided tumor surgery.

View Article and Find Full Text PDF

A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy.

Light Sci Appl

January 2025

Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.

The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!