Photocatalytic oxidation mediated by TiO(2) is a promising oxidation process for degradation of organic pollutants, but suffers from the decreased photocatalytic efficiency attributed to the recombination of photogenerated electrons and holes. Thus, a cost-effective supply of external electrons is an effective way to elevate the photocatalytic efficiency. Here we report a novel bioelectrochemical system to effectively reduce p-nitrophenol as a model organic pollutant with utilization of the energy derived from a microbial fuel cell. In such a system, there is a synergetic effect between the electrochemical and photocatalytic oxidation processes. Kinetic analysis shows that the system exhibits a more rapid p-nitrophenol degradation at a rate two times the sum of rates by the individual photocatalytic and electrochemical methods. The system performance is influenced by both external resistor and electrolyte concentration. Either a lower external resistor or a lower electrolyte concentration results in a higher p-nitrophenol degradation rate. This system has a potential for the effective degradation of refractory organic pollutants and provides a new way for utilization of the energy generated from conversion of organic wastes by microbial fuel cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es101317z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!