Regulatory constraints and environmental and human health concerns have promoted the search for alternative bio-control strategies of fire blight, a destructive disease of rosaceous plants which produces serious losses in apple and pear orchards all over the world. The aim of this study was to establish the antimicrobial activity of Citrus maxima essential oil against Erwinia amylovora. An agar diffusion method was used for the screening of the inhibitory effect of Citrus maxima essential oil on bacterial strains growth. The quantitative inhibitory effect of pomelo oil on in vitro biofilm development was established by a microtiter colorimetric assay. In order to investigate the ability of pomelo oil to interfere with bacterial adherence and subsequent biofilm development on leaves obtained from different pomaceous fruit trees species and cultivars: Pyrus (Napoca, Williams), Malus (Golden Delicious) and Cydonia (Aromate), leaves were immersed in pomelo oil for 1, 2, 3, 5 and 10 minutes before exposing them to bacterial colonization. The architecture of bacterial biofilms developed on leaf surface was analyzed using Confocal Scanning Laser Microscopy (CSLM). Our results showed that Citrus maxima essential oil inhibited the development of bacterial biofilms on leaves, pomelo oil being more active on Cydonia (Aromate) leaves when the leaves were treated for 5 minutes. The results obtained from this study may contribute to the development of new bio-control agents as alternative strategies to protect fruit trees from fire blight disease.
Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R).
View Article and Find Full Text PDFGels
January 2025
Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand.
(GF) is a red seaweed that is widely found in Southeast Asia and has gained attention for its potential bioactive compounds and versatile applications in food products. This study explored the potential of GF as a natural gelling agent in the development of sustainable strawberry-based drinking jelly. By utilizing GF at varying concentrations (0.
View Article and Find Full Text PDFFood Res Int
February 2025
Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:
The lack of sufficient flavour in perry represents a barrier to its further industrialization. This study aimed to investigate the effects of glutathione (GSH), β-glucosidase (Glu), and α-L-rhamnosidase (Rha) pretreatments, the fermentation temperature from 16 °C to 28 °C, and the aging time of 1, 2, and 3 years (PA1, PA2, and PA3) on the physicochemical properties, organic acids, and aroma profiles were investigated. The results demonstrated that the synergistic effect of Glu, Rha, and GSH was more effective than their individual or paired applications in enhancing the varietal aromas.
View Article and Find Full Text PDFFood Res Int
February 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China. Electronic address:
The aim of this study was to explore application of visible and near-infrared (Vis/NIR) spectroscopy combined with machine learning models for SSC and TA prediction of hybrid citrus. The Vis/NIR spectra of samples including navel-region, equator-region and multi-region combination spectra in navel-region and equator-region were collected using a benchtop equipment. The performance of SSC and TA prediction models with different region spectra, including partial least squares (PLS), random forest (RF), k-nearest neighbors (KNN), support vector machine (SVM) and multilayer feedforward neural network (MFNN), was assessed.
View Article and Find Full Text PDFAnn Bot
January 2025
Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
Background: Sweet orange is an important economic crop, and salt stress can inhibit its growth and development.
Methods: In this study, we identified AP2/ERF genes in sweet orange via bioinformatics and performed a combined transcription‒metabolism analysis, which revealed for the first time the integrated molecular mechanism of salt stress regulation in sweet orange.
Key Results: A total of 131 sweet orange AP2/ERF genes were identified and categorized into five groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!