Bone marrow transplantation (BMT) is a potentially curative treatment for patients with leukemia and lymphoma. Tumor eradication is promoted by the anti-tumor activity of donor T cells contained in the transplant; however, donor T cells also mediate the serious side effect of graft-versus-host disease (GVHD). Separation of GVHD from graft anti-tumor activity is an important goal of research in improving transplant outcome. One approach is to take advantage of the immunomodulatory activity of regulatory NKT cells and CD4(+)CD25(+) Treg of host and/or donor origin. Both host and donor NKT cells and donor Treg are able to prevent GVHD in murine models. In this review, we summarize the mechanisms of NKT cell- and Treg-mediated protection against GVHD in mice while maintaining graft anti-tumor activity. In addition, we also examine the interactions between NKT cells and Treg in the context of BMT, and integrate the data from murine experimental models with the observations made in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2926162 | PMC |
http://dx.doi.org/10.1002/eji.201040394 | DOI Listing |
Front Immunol
January 2025
Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.
View Article and Find Full Text PDFJ Cancer
January 2025
Shanghai TCM-Integrated Hospital, Shanghai university of TCM, Shanghai, China.
Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.
View Article and Find Full Text PDFBackground: Initial analysis of liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov; unique identifier NCT03193151) using rejection-associated transcripts failed to find an antibody-mediated rejection state (ie, rich in natural killer [NK] cells and with interferon-gamma effects). We recently developed an optimization strategy in lung transplants that isolated an NK cell-enriched rejection-like (NKRL) state that was molecularly distinct from T cell-mediated rejection (TCMR).
View Article and Find Full Text PDFTransplantation
January 2025
Medical School, University of Western Australia, Perth, WA, Australia.
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.
View Article and Find Full Text PDFSci Rep
January 2025
The Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong Province, China.
Mendelian randomization (MR) was employed to investigate the causal relationships between immune cell phenotypes, hyperthyroidism (HD), and potential metabolic mediators. In this study, we acquired 731 immune cell phenotypes from genome-wide association studies (GWAS) (n = 18,622), HD data from the research by Handan Melike Dönertaş et al. (3,731 cases, 480,867 controls), and aggregated statistics of 1,400 blood metabolites from UK Biobank (n = 115,078).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!