Transcripts encoding 5-HT(2C) receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT(2C-VGV), exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT(2C-VGV) receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT(2C-VGV) receptor (VGV/Y), we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT(2C-VGV) receptors. However, enhanced behavioral sensitivity to a 5-HT(2C) receptor agonist was also seen in mice expressing 5-HT(2C-VGV) receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT(2C-VGV) receptors had greater sensitivity to a 5-HT(2C) inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT(2C) receptor binding sites in the brains of mice solely expressing 5-HT(2C-VGV) receptors. We conclude that 5-HT(2C-VGV) receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5-HT(2C) receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT(2C) receptor binding sites in brain. We further caution that the pattern of 5-HT(2C) receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858556 | PMC |
http://dx.doi.org/10.3389/neuro.23.001.2010 | DOI Listing |
J Biol Chem
April 1999
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, USA.
RNA transcripts encoding the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor (5-HT2CR) undergo adenosine-to-inosine RNA editing events at up to five specific sites. Compared with rat brain, human brain samples expressed higher levels of RNA transcripts encoding the amino acids valine-serine-valine (5-HT2C-VSV) and valine-glycine-valine (5-HT2C-VGV) at positions 156, 158, and 160, respectively. Agonist stimulation of the nonedited human receptor (5-HT2C-INI) and the edited 5-HT2C-VSV and 5-HT2C-VGV receptor variants stably expressed in NIH-3T3 fibroblasts demonstrated that serotonergic agonists were less potent at the edited receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!