The hepatitis C virus internal ribosome entry site (IRES) element contains a three-way junction that is important in the overall RNA conformation, and for its role in the internal initiation of translation. The junction also illustrates some important conformational principles in the folding of three-way helical junctions. It is formally a 3HS(4) junction, with the possibility of two alternative stacking conformers. However, in principle, the junction can also undergo two steps of branch migration that would form 2HS(1)HS(3) and 2HS(2)HS(2) junctions. Comparative gel electrophoresis and ensemble fluorescence resonance energy transfer (FRET) studies show that the junction is induced to fold by the presence of Mg(2+) ions in low micromolar concentrations, and suggest that the structure adopted is based on coaxial stacking of the two helices that do not terminate in a hairpin loop (i.e., helix IIId). Single-molecule FRET studies confirm this conclusion, and indicate that there is no minor conformer present based on an alternative choice of helical stacking partners. Moreover, analysis of single-molecule FRET data at an 8-msec resolution failed to reveal evidence for structural transitions. It seems probable that this junction adopts a single conformation as a unique and stable fold.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905758 | PMC |
http://dx.doi.org/10.1261/rna.2158410 | DOI Listing |
Phys Eng Sci Med
December 2024
Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
The stability of dosiomics features (DFs) and dose-volume histogram (DVH) parameters for detecting disparities in helical tomotherapy planned dose distributions was assessed. Treatment plans of 18 prostate patients were recalculated using the followings: field width (WF) (2.5 vs.
View Article and Find Full Text PDFRNA
July 2024
Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure upon binding of the 2'-dG molecule, which terminates transcription. RNA conformations are generally strongly affected by positively charged metal ions (especially Mg). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all-atom molecular dynamics simulations (99 μsec aggregate sampling for the study) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments.
View Article and Find Full Text PDFChem Biol Interact
May 2024
Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, CZ-78371, Olomouc, Czech Republic. Electronic address:
Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [CoL] cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges.
View Article and Find Full Text PDFChem Sci
December 2023
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
The use of copper-based artificial nucleases as potential anticancer agents has been hampered by their poor selectivity in the oxidative DNA cleavage process. An alternative strategy to solve this problem is to design systems capable of selectively damaging noncanonical DNA structures that play crucial roles in the cell cycle. We designed an oligocationic Cu peptide helicate that selectively binds and cleaves DNA three-way junctions (3WJs) and induces oxidative DNA damage a ROS-mediated pathway both and , specifically at DNA replication foci of the cell nucleus, where this DNA structure is transiently generated.
View Article and Find Full Text PDFMethods
November 2023
SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland. Electronic address:
The development of compounds that can selectively bind with non-canonical DNA structures has expanded in recent years. Junction DNA, including three-way junctions (3WJs) and four-way Holliday junctions (HJs), offer an intriguing target for developmental therapeutics as both 3WJs and HJs are involved in DNA replication and repair processes. However, there are a limited number of assays available for the analysis of junction DNA binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!