Acute toxicity of diphacinone in Northern bobwhite: effects on survival and blood clotting.

Ecotoxicol Environ Saf

Patuxent Wildlife Research Center, U.S. Geological Survey, Department of the Interior, 10300 Baltimore Avenue, BARC East-308, Beltsville, MD 20705, USA.

Published: September 2010

The anticoagulant rodenticide diphacinone was slightly toxic (acute oral LD50 2014 mg/kg) to Northern bobwhite (Colinus virginianus) in a 14-day acute toxicity trial. Precise and sensitive assays of blood clotting (prothrombin time, Russell's Viper venom time, and thrombin clotting time) were adapted for use in quail, and this combination of assays is recommended to measure the effects of anticoagulant rodenticides. A single oral sublethal dose of diphacinone (434 mg/kg body weight) prolonged clotting time at 48 h post-dose compared to controls. At 783 mg/kg (approximate LD02), clotting time was prolonged at both 24 and 48 h post-dose. Prolongation of in vitro clotting time reflects impaired coagulation complex activity, and was detected before overt signs of toxicity were apparent at the greatest dosages (2868 and 3666 mg/kg) in the acute toxicity trial. These clotting time assays and toxicity data will assist in the development of a pharmacodynamic model to predict toxicity, and also facilitate rodenticide hazard and risk assessments in avian species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2010.05.021DOI Listing

Publication Analysis

Top Keywords

clotting time
20
acute toxicity
12
northern bobwhite
8
blood clotting
8
toxicity trial
8
clotting
7
time
7
toxicity
5
acute
4
toxicity diphacinone
4

Similar Publications

Background: Gastric cancer (GC) is a prevalent malignancy with a substantial health burden and high mortality rate, despite advances in prevention, early detection, and treatment. Compared with the global average, Asia, notably China, reports disproportionately high GC incidences. The disease often progresses asymptomatically in the early stages, leading to delayed diagnosis and compromised outcomes.

View Article and Find Full Text PDF

This study presents a novel series of -acylated 1,2,4-triazol-5-amines and 1-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives and achieving IC values as low as 0.7 and 0.

View Article and Find Full Text PDF

Background: Blood loss during liver transplantation (LT) remains a major concern associated with increased morbidity and reduced patient and graft survival. The high complexity of the procedure associated with the multifaceted origin of the bleeding urges early identification of high-risk patients and proper monitoring of hemostasis disorders in order to improve results. The accuracy of international normalized ratio (INR) and activated partial thromboplastin time (aPTT) to evaluate coagulation status in cirrhotic patients has been doubted.

View Article and Find Full Text PDF

This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots.

View Article and Find Full Text PDF

Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!