There is a need for more efficient tests to evaluate functional outcome following experimental traumatic brain injury (TBI), reflecting deficits in cognitive, sensory, and motor functions that are seen in TBI patients. The Multivariate Concentric Square Field (MCSF) test is a relatively new behavioral model that measures exploration, risk taking, risk assessment, and shelter seeking, all of which are evolutionarily-conserved strategies for survival. The multivariate design enables scoring of different functional domains in a single test situation, with a free choice of optional environmental settings. Furthermore, repeated trials permits cognitive effects to be measured. In the present study, 11 anesthetized C57BL6 mice received controlled cortical injury (CCI) (0.5 mm and 3.3 m/sec) over the right parietal cerebral cortex or sham surgery (n = 12). Naïve mice (n = 12) not subjected to any surgical procedure were also included. The animals were evaluated in the MCSF test at 2 and 7 days post-surgery, and behavioral profiles were analyzed. The results revealed differences in risk taking and explorative behavior between the sham animals and the animals subjected to trauma. Animals subjected to trauma were characterized by taking more risks and had a higher level of exploration activity, but they sought less shelter. Repeated exposure to the MCSF caused a general decrease in activity in the naïve and sham group, while a more specific behavioral impairment was seen in injured mice, suggesting cognitive dysfunction. We submit that the MCSF test is a useful complementary tool for functional outcome evaluation in experimental TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2009.0953DOI Listing

Publication Analysis

Top Keywords

mcsf test
12
multivariate concentric
8
concentric square
8
square field
8
behavioral profiles
8
traumatic brain
8
brain injury
8
functional outcome
8
animals subjected
8
subjected trauma
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!