Purpose: To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI.

Materials And Methods: Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated.

Results: It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach.

Conclusion: An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653304PMC
http://dx.doi.org/10.1002/jmri.22218DOI Listing

Publication Analysis

Top Keywords

iterative image
20
image reconstruction
20
reconstruction algorithm
12
values regularization
12
regularization parameter
12
reconstruction
9
nonuniform fast
8
fast fourier
8
fourier transform
8
performance iterative
8

Similar Publications

Purpose: During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.

Methods: X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment.

View Article and Find Full Text PDF

Background: Physical activity and exercise are promoted worldwide as effective interventions for healthy ageing. Various exercise initiatives have been developed and evaluated for their efficacy and effectiveness among older populations. However, a deeper understanding of participants' experiences with these initiatives is crucial to foster long-term activity and exercise among older persons.

View Article and Find Full Text PDF

PET has become an important clinical modality but is limited to imaging positron emitters. Recently, PET imaging withZr, which has a half-life of 3 days, has attracted much attention in immuno-PET to visualize immune cells and cancer cells by targeting specific antibodies on the cell surface. However,Zr emits a single gamma ray at 909 keV four times more frequently than positrons, causing image quality degradation in conventional PET.

View Article and Find Full Text PDF

An L-plug-and-play approach for MPI using a zero shot denoiser with evaluation on the 3D open MPI dataset.

Phys Med Biol

January 2025

Faculty of Mathematics and Natural Sciences , Hochschule Darmstadt, Schöfferstr., 3, Darmstadt, Hessen, 64295, GERMANY.

Magnetic Particle Imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), specific brain regions become vulnerable to pathology while others remain resilient. New methods of imaging such as highly multiplexed immunofluorescence (MxIF) provide an abundance of spatial information, while analytical techniques like machine learning (ML) can address questions of cellular contributors to this regional vulnerability.

Method: We performed MxIF staining for 26 markers and compared postmortem human samples from an AD-susceptible brain area, the prefrontal cortex (PFC, Brodmann's areas 9, 10 or 46) to an AD-resilient brain area, the primary visual cortex (V1, area 17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!