Autologous bone marrow transplantation (ABMT) for paroxysmal nocturnal hemoglobinuria (PNH) remains difficult so far. To expand residual normal CD34(+)CD59(+) cells isolated from patients with PNH and observe the long-term hematopoietic reconstruction ability of the expanded cells both ex vivo and in vivo, CD34(+)CD59(+) cells from 13 PNH patients and CD34(+) cells from 11 normal controls were separated from bone marrow mononuclear cells first by immunomagnetic microbeads and then by flow cytometry autoclone sorting. The cells were then cultivated under different conditions. The long-term hematopoietic supporting ability of expanded CD34(+)CD59(+) cells was evaluated by long-term culture in semi-solid medium in vitro and long-term engraftment in irradiated severe combined immunodeficiency (SCID) mice in vivo. The best combination of hematopoietic growth factors for ex vivo expansion was SCF + IL-3 + IL-6 + FL + Tpo + Epo. The most suitable time for harvest was on day 7. CD34(+)CD59(+) PNH cells retained strong colony-forming capacity even after expansion. The survival rate, complete blood cell count recovery on day 90, and human CD45 expression in different organs were similar between the irradiated SCID mice transplanted with expanded CD34(+)CD59(+) PNH cells and those with normal CD34(+) cells (P > 0.05) both in primary and secondary transplantation. These data provided a new potential way of managing PNH with ABMT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12185-010-0628-3DOI Listing

Publication Analysis

Top Keywords

cd34+cd59+ cells
16
long-term hematopoietic
12
cells
11
vivo expansion
8
paroxysmal nocturnal
8
nocturnal hemoglobinuria
8
bone marrow
8
ability expanded
8
cd34+ cells
8
cells normal
8

Similar Publications

Peritoneal mesenchymal stromal cells (pMSCs) are isolated from peritoneal dialysis (PD) effluent, and treatment with the pMSCs reduces peritoneal membrane injury in rat model of PD. This study was designed to verify the identity of the pMSCs. pMSCs were grown in plastic dishes for 4-7 passages, and their cell surface phenotype was examined by staining with a panel of 242 antibodies.

View Article and Find Full Text PDF

Targeted surface marker screening on neuronal structures in the human choroid.

Exp Eye Res

February 2023

Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria. Electronic address:

While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface.

View Article and Find Full Text PDF

Background: Normal human breast tissues are a heterogeneous mix of epithelial and stromal subtypes in different cell states. Delineating the spectrum of cellular heterogeneity will provide new insights into normal cellular properties within the breast tissue that might become dysregulated in the initial stages of cancer. Investigation of surface marker expression provides a valuable approach to resolve complex cell populations.

View Article and Find Full Text PDF

95% of the body's testosterone is produced by the Leydig Cells (LCs) in adult testis, and LC functional degradation can cause testosterone deficiency ultimately leading towards hypogonadism. The transplantation of LCs derived from stem cells is a very promising therapy to overcome the testosterone deficiency. The isolated umbilical cord mesenchymal stem cells (UMSCs) were identified by flow cytometry and adipogenic and osteogenic differentiation.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are useful for various purposes, including tissue engineering, regeneration, and gene therapy. MSCs isolated from extraocular muscles (EOMs) can be easily expanded in vitro, and can undergo multilineage differentiations involving adipogenesis, chondrogenesis, osteogenesis, and even neuronal or myogenic differentiation. This study aimed to isolate, characterize, and compare extraocular muscle-derived muscle progenitor cells (EOM-MPCs) from normal subjects and patients with Graves' orbitopathy (GO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!