A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Correlations between bacterial ecology and mobile DNA. | LitMetric

Correlations between bacterial ecology and mobile DNA.

Curr Microbiol

Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.

Published: January 2011

Several factors can affect the density of mobile DNA in bacterial genomes including rates of exposure to novel gene pools, recombination, and reductive evolution. These traits are difficult to measure across a broad range of bacterial species, but the ecological niches occupied by an organism provide some indication of the relative magnitude of these forces. Here, by analyzing 384 bacterial genomes assigned to three ecological categories (obligate intracellular, facultative intracellular, and extracellular), we address two, related questions: How does the density of mobile DNA vary across the Bacteria? And is there a statistically supported relationship between ecological niche and mobile element gene density? We report three findings. First, the fraction of mobile element genes in bacterial genomes ranges from 0 to 21% and decreases significantly: facultative intracellular > extracellular > obligate intracellular bacteria. Results further show that the obligate intracellular bacteria that host switch have a higher mobile DNA gene density than the obligate intracellular bacteria that are vertically transmitted. Second, while bacteria from the three ecological niches differ in their average mobile DNA contents, the ranges of mobile DNA found in each category overlap a surprising extent, suggesting bacteria with different lifestyles can tolerate similar amounts of mobile DNA. Third, mobile DNA gene densities increase with genome size across the entire dataset, and the significance of this correlation is dependent on the obligate intracellular bacteria. Further, mobile DNA gene densities do not correlate with evolutionary relationships in a 16S rDNA phylogeny. These findings statistically support a compelling link between mobile element evolution and bacterial ecology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006647PMC
http://dx.doi.org/10.1007/s00284-010-9693-3DOI Listing

Publication Analysis

Top Keywords

mobile dna
36
obligate intracellular
20
intracellular bacteria
16
mobile
12
bacterial genomes
12
mobile element
12
dna gene
12
dna
9
bacterial ecology
8
density mobile
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!