Laser cooling and electromagnetic traps have led to a revolution in atomic physics, yielding dramatic discoveries ranging from Bose-Einstein condensation to the quantum control of single atoms. Of particular interest, because they can be used in the quantum control of one atom by another, are excited Rydberg states, where wavefunctions are expanded from their ground-state extents of less than 0.1 nm to several nanometres and even beyond; this allows atoms far enough apart to be non-interacting in their ground states to strongly interact in their excited states. For eventual application of such states, a solid-state implementation is very desirable. Here we demonstrate the coherent control of impurity wavefunctions in the most ubiquitous donor in a semiconductor, namely phosphorus-doped silicon. In our experiments, we use a free-electron laser to stimulate and observe photon echoes, the orbital analogue of the Hahn spin echo, and Rabi oscillations familiar from magnetic resonance spectroscopy. As well as extending atomic physicists' explorations of quantum phenomena to the solid state, our work adds coherent terahertz radiation, as a particularly precise regulator of orbitals in solids, to the list of controls, such as pressure and chemical composition, already familiar to materials scientists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature09112 | DOI Listing |
BioData Min
January 2025
The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.
Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Durham University, Durham, United Kingdom.
Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Department of Ophthalmology, Fuyang Hospital Affiliated to Bengbu Medical University(Fuyang People's Hospital), Fuyang, 236400, Anhui Province, China. Electronic address:
Purpose: To evaluate optic disc and macular microvasculature changes in children with anisometropic amblyopia before and after treatment.
Methods: In all, 60 children with unilateral anisometropic amblyopia between the ages of 6 and 12 were randomly selected from the ophthalmology clinic of Fuyang People's Hospital, while 60 children with non-amblyopia in the same age range were randomly selected as a normal control group. The right eye was uniformly taken in the control group with at least 6 months of follow-up.
Sci Adv
January 2025
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.
Using time as an additional design parameter in electromagnetism, photonics, and wave physics is attracting considerable research interest, motivated by the possibility to explore physical phenomena and engineering opportunities beyond the limits of time-invariant systems. Here, we report the experimental demonstration of enhanced broadband absorption of electromagnetic waves in a continuously modulated time-varying system, exceeding one of the key theoretical limits of linear time-invariant absorbers. This is achieved by harnessing the frequency-wave vector transitions and enhanced interference effects enabled by breaking both continuous space- and time-translation symmetries in a periodically time-modulated absorbing structure operating at radio frequencies.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Psychology, Huron University College at Western: London, 1349 Western Road, London, ON, N6G 1H3, Canada.
Previous studies have reported visual motion aftereffects (MAEs) following prolonged exposure to auditory stimuli depicting motion, such as ascending or descending musical scales. The role of attention in modulating these cross-modal MAEs, however, remains unclear. The present study manipulated the level of attention directed to musical scales depicting motion and assessed subsequent changes in MAE strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!