Individuals, families, networks, and botanic gardens have made records of flowering times of a wide range of plant species over many years. These data can highlight year to year changes in seasonal events (phenology) and those datasets covering long periods draw interest for their perspective on plant responses to climate change. Temperate flowering phenology is complex, using environmental cues such as temperature and photoperiod to attune flowering to appropriate seasonal conditions. Here we give an overview of flowering phenological recording, outline different patterns of flowering, and look at the interpretation of datasets in relation to seasonal and climatic change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erq165 | DOI Listing |
Plants (Basel)
January 2025
Earth and Life Institute-Agronomy, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
Ecol Appl
December 2024
Department of Species Interaction Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany.
Climate change is one of the largest threats to grassland plant species, which can be modified by land management. Although climate change and land management are expected to separately and interactively influence plant demography, this has been rarely considered in climate change experiments. We used a large-scale experiment in central Germany to quantify the effects of grassland management, climate change, and their joint effect on the demography and population growth rate of 11 plant species all native to this temperate grassland ecosystem.
View Article and Find Full Text PDFEcol Lett
November 2024
Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France.
Pollen limitation has a considerable influence on forest masting, the highly variable and synchronised seed production, on which forest regeneration and ecosystem dynamics largely rely. Depending on the various mechanisms possibly involved in pollen limitation, the consequences of climate change on masting could be very different. These mechanisms were investigated in 10 oak populations along a climatic gradient using surveys of airborne pollen and fruiting rate as a proxy of pollen limitation.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450014, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!