Extracts from plants containing plumbagin (PLB) continue to be used as a treatment of a number of chronic immunologically-based diseases. However, most of these claims are supported only by anecdotal evidence with few scientific reports describing the mechanism of action or the efficacy of plumbagin in the suppression of the immune response. In the current study, we tested the hypothesis that plumbagin-induced suppression of the immune response was mediated through the induction of apoptosis. Splenocytes from C57BL/6 mice cultured in the presence of 0.5 microM or greater concentrations of PLB significantly reduced proliferative responses to mitogens, including anti-CD3 mAbs, concanavalin A (Con A), lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB) in vitro. Exposure of naïve and activated splenocytes to PLB led to a significant increase in the levels of apoptosis. In addition, PLB treatment led to a significant increase in the levels of reactive oxygen species (ROS) in naïve and activated splenocytes. Furthermore, treatment with the ROS scavenger, N-acetylcysteine (NAC), prevented PLB-induced apoptosis, suggesting a role of ROS in PLB-induced apoptosis. PLB-induced apoptosis led to ROS-mediated activation of both the extrinsic and intrinsic apoptotic pathways. In addition, plumbagin led to increased expression of Fas. Finally, treatment of mice with PLB (5mg/kg) led to thymic and splenic atrophy as well as a significant suppression of the response to SEB and dinitrofluorobenzene (DNFB) in vivo. Together, these results suggest that plumbagin has significant immunosuppressive properties which are mediated by generation of ROS, upregulation of Fas, and the induction of apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2010.05.013DOI Listing

Publication Analysis

Top Keywords

plb-induced apoptosis
12
reactive oxygen
8
oxygen species
8
upregulation fas
8
suppression immune
8
immune response
8
induction apoptosis
8
naïve activated
8
activated splenocytes
8
led increase
8

Similar Publications

Melanoma is one of the most malignant skin cancers that require comprehensive therapies, including chemotherapy. A plant-derived drug, plumbagin (PLB), exhibits an anticancer property in several cancers. We compared the cytotoxic and metabolic roles of PLB in A375 and SK-MEL-28 cells, each with different aggressiveness.

View Article and Find Full Text PDF

Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8 T cells.

Pharmacol Res

July 2021

Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China. Electronic address:

Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells.

View Article and Find Full Text PDF

Objectives: To evaluate the inhibitory effect and mechanism of plumbagin (PLB) against drug-resistant tongue squamous cell carcinoma (TSCC), and whether its antitumour effect is not affected by tumour drug resistance.

Methods: TSCC sensitive CAL27 cells and drug-resistant CAL27/RE cells were used to study the cytotoxicity and mechanism of PLB in vitro, including CCK-8 analysis, colony formation, DAPI staining, flow cytometry assay, transmission electron microscopy, western blotting assay, autophagy, apoptosis and ROS fluorescent probes. BALB/c nude mice xenograft models were used to study the growth inhibitory effect of PLB in vivo.

View Article and Find Full Text PDF

Up and down-regulation of mRNA in the cytotoxicity and genotoxicity of Plumbagin in HepG2/C3A.

Environ Toxicol Pharmacol

April 2020

Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil. Electronic address:

Studies that evaluated the mechanisms of action of Plumbagin (PLB) and its toxicity may contribute to future therapeutic applications of this compound. We investigate biomarker important in the mechanisms of action correlate the expression of mRNA with the cytotoxic and genotoxic effects of PLB on HepG2/C3A. In the analysis of cytotoxicity, PLB decreased cell viability and membrane integrity at concentrations ≥ 15μM.

View Article and Find Full Text PDF

Plumbagin induces RPE cell cycle arrest and apoptosis via p38 MARK and PI3K/AKT/mTOR signaling pathways in PVR.

BMC Complement Altern Med

March 2018

Department of Ophthalmology, Second Hospital of Hebei Medical University, No. 215 Peace West Road, Qiaoxi District, Shijiazhuang, Hebei, 050000, China.

Background: This study aimed to explore the effects of plumbagin (PLB) on ARPE-19 cells and underlying mechanism.

Methods: Cultured ARPE-19 cells were treated with various concentrations (0, 5, 15, and 25 μM) of PLB for 24 h or with 15 μM PLB for 12, 24 and 48 h. Then cell viability was evaluated by MTT assay and DAPI staining, while apoptosis and cell cycle progression of ARPE cells were assessed by flow cytometric analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!