An iTPA (isothermal target and signaling probe amplification) method for the quantitative detection of nucleic acids, based on a combination of novel ICA (isothermal chain amplification) and fluorescence resonance energy transfer cycling probe technology (FRET CPT), is described. In the new ICA method, which relies on the strand displacement activity of DNA polymerase and the RNA degrading activity of RNase H, two displacement events occur in the presence of four specially designed primers. This phenomenon leads to powerful amplification of target DNA. Since the amplification is initiated only after hybridization of the four primers, the ICA method leads to high specificity for the target sequence. As part of the new ICA method, iTPA is achieved by incorporating FRET CPT to generate multiple fluorescence signals from a single target molecule. Using the resulting dual target and signaling probe amplification system, even a single copy level of a target gene can be successfully detected and quantified under isothermal conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac100606mDOI Listing

Publication Analysis

Top Keywords

target signaling
12
signaling probe
12
probe amplification
12
ica method
12
isothermal target
8
amplification method
8
based combination
8
isothermal chain
8
chain amplification
8
fluorescence resonance
8

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!