The synthesis of carbonaceous materials with a high surface density of amino functions for CO(2) sorption and sequestration is reported. The amino-rich carbonaceous materials are characterized by elemental analysis, N(2) sorption, scanning and transmission electron microscopy, zeta potential, TGA and FTIR measurements. A detailed discussion on the use of these materials in CO(2) capture is provided. The materials show significant sorption capabilities for CO(2) (4.3 mmol g(-1)at -20 degrees C and 1 bar). Furthermore, they show a high apparent selectivity for CO(2) over N(2) at both low and high temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201000044 | DOI Listing |
Int J Biol Macromol
January 2025
Desalination Technology Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.
Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.
View Article and Find Full Text PDFChemistry
January 2025
Nanjing University of Aeronautics and Astronautics, School of Materials Science and Engineering, 29 Yudao St., 210016, Nanjing, CHINA.
As a potential alternative to next-generation LIBs, carbonous materials have garnered significant attention as anode materials for potassium-ion batteries due to their low cost and environmental friendliness. However, carbonaceous materials cannot fulfill the demand of anode for PIBs, due to volume expansion and poor stability during charging/discharging process. It is well-known that N doping can provide active sites for K-storage, and expand the layer distance between graphite layers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Aqueous halogen batteries are gaining recognition for large-scale energy storage due to their high energy density, safety, environmental sustainability, and cost-effectiveness. However, the limited electrochemical stability window of aqueous electrolytes and the absence of desirable carbonaceous hosts that facilitate halogen redox reactions have hindered the advancement of halogen batteries. Here, a low-cost, high-concentration 26 m Li-B-C-O aqueous solution incorporating lithium bromide (LiBr), lithium chloride (LiCl), and lithium acetate (LiOAc) was developed for aqueous batteries, which demonstrated an expanded electrochemical stability window of .
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.
Developing high-performance catalysts for the alcohol electrooxidation reaction is of significant importance for the practical application of direct fuel cells. Herein, a supported catalyst consisting of well-dispersive PdCu nanoparticles (NPs) and ultrathin NiZnP nanosheets (NSs) is synthesized. The high-surface-area NiZnP NSs provide a platform for good dispersion of PdCu NPs, resulting in stable catalysts with a large number of exposed surface atoms.
View Article and Find Full Text PDFGraphene 2D Mater
June 2024
NanoSafe, Inc., Blacksburg, VA 24060, USA.
Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!