We examined age-related differences in wild brown capuchins' foraging efficiency and the food-processing behaviors directed toward maripa palm fruit (Maximiliana maripa). A detailed comparison of the different foraging techniques showed that plucking the fruit from the infructescence constituted the main difficulty of this task. Foraging efficiency tended to increase with age, with a threshold at which sufficient strength allowed immatures by the age of three to reach adult-level efficiency. Youngsters spent more time than older individuals browsing the infructescence and pulling the fruit in an attempt to harvest it. Infants tried to compensate for their inability to pluck fruit by adopting alternative strategies but with low payback, such as gnawing unplucked fruit and opportunistically scrounging others' partially processed food. Although around 2 years of age, young capuchins exhibited all of the behaviors used by adults, they did not reach adult-level proficiency at feeding on maripa until about 3 years (older juveniles). We compared this developmental pattern with that of extractive foraging on beetle larvae (Myelobia sp.) hidden in bamboo stalks, a more difficult food for these monkeys [Gunst N, Boinski S, Fragaszy DM. Behaviour 145:195-229, 2008]. For maripa, the challenge was mainly physical (plucking the fruit) once a tree was encountered, whereas for larvae, the challenge was primarily perceptual (locating the hidden larvae). For both foods, capuchins practice for years before achieving adult-level foraging competence, and the timeline is extended for larvae foraging (until 6 years) compared with maripa (3 years). The differing combinations of opportunities and challenges for learning to forage on these different foods illustrate how young generalist foragers (i.e. exploiting a large number of animal and plant species) may compensate for their low efficiency in extractive foraging tasks by showing earlier competence in processing less difficult but nutritious foods, such as maripa fruit.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajp.20856DOI Listing

Publication Analysis

Top Keywords

wild brown
8
foraging
8
fruit
8
fruit maximiliana
8
maximiliana maripa
8
foraging efficiency
8
plucking fruit
8
reach adult-level
8
maripa years
8
extractive foraging
8

Similar Publications

Cardiac amyloidosis (CA) is an infiltrative disease that results from the deposition of amyloid fibrils in the myocardium, resulting in restrictive cardiomyopathy. The amyloid fibrils are predominantly derived from two parent proteins, immunoglobulin light chain (AL) and transthyretin (ATTR), and ATTR is further classified into hereditary (ATTRv) and wild-type (ATTRwt) based on the presence or absence, respectively, of a mutation in the transthyretin gene. Once thought to be a rare entity, CA is increasingly recognized as a significant cause of heart failure due to improved clinical awareness and better diagnostic imaging.

View Article and Find Full Text PDF

Katsumada galangal seed ( K. Schum) is an important member of the Zingiberaceae family, with both medicinal value and culinary applications (Park et al. 2020).

View Article and Find Full Text PDF

New insights into freshwater ascomycetes: discovery of novel species in diverse aquatic habitats.

Front Cell Infect Microbiol

January 2025

Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.

During investigations of freshwater fungi in Hunan and Yunnan provinces, China, sp. nov. (Nectriaceae), sp.

View Article and Find Full Text PDF

Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!