Novel polyurethanes with interconnected porous structure induce in vivo tissue remodeling and accompanied vascularization.

J Biomed Mater Res A

Department of Polymer Science, Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, The Netherlands.

Published: October 2010

Tissue engineering and regenerative medicine have furnished a vast range of modalities to treat either damaged tissue or loss of soft tissue or its function. In most approaches, a temporary porous scaffold is required to support tissue regeneration. The scaffold should be designed such that the turnover synchronizes with tissue remodeling and regeneration at the implant site. Segmented polyester urethanes (PUs) used in this study were based on epsilon-caprolactone (CL) and co-monomers D,L-lactide (D,L-L) and gamma-butyrolactone (BL), and 1,4-butanediisocyanate (BDI). In vitro, the PUs were nontoxic and haemocompatible. To test in vivo biocompatibility, the PUs were further processed into porous structures and subcutaneously implanted in rats for a period up to 21 days. Tissue remodeling and scaffold turnover was associated with a mild tissue response. The tissue response was characterized by extensive vascularization through the interconnected pores, with low numbers of macrophages on the edges and stroma formation inside the pores of the implants. The tissue ingrowth appeared to be related to the extent of microphase separation of the PUs and foam morphology. By day 21, all of the PU implants were highly vascularized, confirming the pores were interconnected. Degradation of P(CL/D,L-L)-PU was observed at this time, whereas the other two PU types remained intact. The robust method reported here of manufacturing and processing, good mechanical properties, and in vivo tissue response of the porous P(CL/D,L-L)-PU and PBCL-PU makes them excellent candidates as biomaterials with an application for soft tissue remodeling, for example, for cardiovascular regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32817DOI Listing

Publication Analysis

Top Keywords

tissue remodeling
16
tissue
12
tissue response
12
vivo tissue
8
soft tissue
8
novel polyurethanes
4
polyurethanes interconnected
4
porous
4
interconnected porous
4
porous structure
4

Similar Publications

Pancreatic cystic changes in adults are increasingly identified through advanced cross-sectional imaging. However, the impact of initial/intra-lobular epithelial remodeling on the local β-cell population remains unclear. In this study, we examined 10 human cadaveric donor pancreases (tail and body regions) via integration of stereomicroscopy, clinical H&E histology, and 3D immunohistochemistry, identifying 36 microcysts (size: 1.

View Article and Find Full Text PDF

Isosteviol Sodium Promotes Neurological Function Recovery in a Model of Spinal Cord Injury in Rats.

Immun Inflamm Dis

January 2025

School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.

Background: Traumatic spinal cord injury (SCI) is an incurable condition that is the largest cause of disability. In previous studies, Isosteviol sodium (STVNa) has been shown to protect rats against acute focal cerebral ischemia; however, the effects of STVNa on SCI recovery in rats remain unknown.

Methods: STVNa was given intraperitoneally after SCI to see if it had any neuroprotective benefits.

View Article and Find Full Text PDF

Background: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.

Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).

View Article and Find Full Text PDF

Purpose Of The Study: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells.

Material And Methods: The study was conducted in an in vivo animal model.

View Article and Find Full Text PDF

Fibroblasts in heterotopic ossification: mechanisms and therapeutic targets.

Int J Biol Sci

January 2025

School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.

Heterotopic ossification (HO) refers to the abnormal formation of bone in non-skeletal tissues. Fibroblasts have traditionally been viewed as stationary cells primarily responsible for producing extracellular matrix during tissue repair and fibrosis. However, recent discoveries regarding their plasticity-encompassing roles in inflammation, extracellular matrix remodeling, and osteogenesis-highlight their potential as key contributors to the development of HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!