Recent studies have demonstrated that n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) are able to suppress cell proliferation and inhibit tumor growth. The objective of our study was to investigate the influence of a high dose EPA on the development of the tumor phenotype in ataxia-telangiectasia mutated (Atm)-deficient mice, a genetic cancer model that is associated with increased levels of oxidative stress. We analyzed toxicity, proliferation, cell-cycle progression, and apoptosis of EPA in vitro and latency to tumorigenesis in vivo. Because of the impact of reactive oxygen species (ROS) on the tumor incidence in ataxia telangiectasia (AT), we further analyzed the effect of EPA on the generation of ROS and oxidative DNA damage (ODD). EPA effectively inhibited proliferation, altered cell-cycle progression, and induced apoptosis of tumor cells (AT-4). EPA showed no effect on the latency to tumorigenesis in Atm-deficient mice. EPA treatment was accompanied by a significant increase of ROS and ODD. Our results demonstrate the antiproliferative effect of EPA on tumor cells by alteration of cell-cycle progression and induction of apoptosis in vitro. On the other hand, EPA treatment of Atm-deficient mice led to the formation of ROS and accumulation of ODD that might have abrogated the anticarcinogenic effect caused by EPA.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635580903532457DOI Listing

Publication Analysis

Top Keywords

atm-deficient mice
16
cell-cycle progression
12
epa
10
reactive oxygen
8
oxygen species
8
eicosapentaenoic acid
8
latency tumorigenesis
8
tumor cells
8
epa treatment
8
tumor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!