This paper describes a bench-scale study dealing with the removal of heavy metals by electrokinetic (EK) remediation from sediment of the Great Backa Canal (Vojvodina, Republic of Serbia), with an emphasis on the dependence of removal efficacies on the physicochemical states of the heavy metals and sediment chemistry. Sediment samples were spiked with the following heavy metals (mg kg(-1)): Zn 4400, Ni 900, Cu 1140 and Cd 57. In addition to determining the pseudo-total metal content in the contaminated sediment before and after EK treatment, BCR sequential extraction was also performed to examine the distribution of the contaminants in the sediment. Conventional EK remediation (EXP I) was ineffective in removing the heavy metals investigated, so two enhanced processes were developed. In both these processes, the mass of treated sediment was reduced to avoid the presence of inactive electric field areas in the sediment and increase current density. The first enhanced experiment (EXP II) used acetic acid (HAc) solution (pH 2.9) as an anolyte. Combined with the smaller sediment mass, this resulted in an increase in overall removal efficacies (9% for Zn, 15% for Ni, 10% for Cu and 15% for Cd). The second enhanced experiment (EXP III), as well as using HAc solution as an anolyte, made use of a cation exchange membrane in the cathodic chamber to minimize pH changes in the region adjacent to the cathode, which negatively influenced the removal of some heavy metals. However, no improvement in removal efficacy was achieved in EXP III. Since the redox potential of the sediment drops during the EK process, metals removal is limited by the formation of their sulfides. In conclusion, the removal of heavy metals by EK remediation is governed by a complex interplay of the complexation, precipitation and reduction processes, and the difficulties encountered in their optimization can explain the unsatisfactory effectiveness achieved by the described remediation procedure. Improved understanding of the behavior of metal ions during EK treatment can be useful in predicting and enhancing the efficacy of the process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2010.486347 | DOI Listing |
Sci Rep
January 2025
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Background: Environmental metal exposure has been implicated in the development of digestive tract cancers, although the specific associations remain poorly defined. This study aimed to investigate the relationship between blood metal levels and the risk of digestive tract cancers among U.S.
View Article and Find Full Text PDFSci Rep
January 2025
Internal Medicine Service, Hospital Viamed Santa Ángela de la Cruz, Seville, Spain.
Obesity and iron deficiency (ID) are widespread health issues, with subclinical inflammation in obesity potentially contributing to ID through unclear mechanisms. The aim of the present work was to elucidate how obesity-associated inflammation disturb iron metabolism and to investigate the effect of intravenous (IV) iron supplementation on absolute iron deficient pre-obese (BMI 25.0-29.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Material Science and Engineering, Henan University of Technology Zhengzhou, Henan, 450001, China.
A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.
In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.
View Article and Find Full Text PDFEnviron Health Prev Med
January 2025
Department of Social and Environmental Medicine, Kanazawa Medical University.
Background: As research progresses, there is a growing body of evidence indicating that urinary metallothionein (MT) levels may be elevated in individuals exposed to cadmium (Cd). This study aimed to investigate the potential association between urinary MT levels and causes of mortality among residents of the Kakehashi River Basin who have been exposed to Cd.
Method: The study involved a total of 1,398 men and 1,731 women were conducted between 1981 and 1982, with follow-up until November 2016.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!