Evaluation of different POCT devices for glucose measurement in a clinical neonatal setting.

Eur J Pediatr

Division of Neonatology, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Av Pierre Decker, Lausanne, Switzerland.

Published: November 2010

Hypoglycaemia is a major cause of neonatal morbidity and may induce long-term developmental sequelae. Clinical signs of hypoglycaemia in neonatal infants are unspecific or even absent, and therefore, precise and accurate methods for the assessment of glycaemia are needed. Glycaemia measurement in newborns has some particularities like a very low limit of normal glucose concentration compared to adults and a large range of normal haematocrit values. Many bedside point-of-care testing (POCT) systems are available, but literature about their accuracy in newborn infants is scarce and not very convincing. In this retrospective study, we identified over a 1-year study period 1,324 paired glycaemia results, one obtained at bedside with one of three different POCT systems (Elite™ XL, Ascensia™ Contour™ and ABL 735) and the other in the central laboratory of the hospital with the hexokinase reference method. All three POCT systems tended to overestimate glycaemia values, and none of them fulfilled the ISO 15197 accuracy criteria. The Elite XL appeared to be more appropriate than Contour to detect hypoglycaemia, however with a low specificity. Contour additionally showed an important inaccuracy with increasing haematocrit. The bench analyzer ABL 735 was the most accurate of the three tested POCT systems. Both of the tested handheld glucometers have important drawbacks in their use as screening tools for hypoglycaemia in newborn infants. ABL 735 could be a valuable alternative, but the blood volume needed is more than 15 times higher than for handheld glucometers. Before daily use in the newborn population, careful clinical evaluation of each new POCT system for glucose measurement is of utmost importance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-010-1243-2DOI Listing

Publication Analysis

Top Keywords

poct systems
16
abl 735
12
evaluation poct
8
glucose measurement
8
newborn infants
8
three poct
8
handheld glucometers
8
poct
5
poct devices
4
devices glucose
4

Similar Publications

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias of clinical relevance and a major cause of cardiovascular morbidity and mortality. Following a diagnosis of AF, patients are directed towards therapy with anticoagulant drugs to reduce the thromboembolic risk and antiarrhythmics to control their cardiac rhythm, with periodic follow-up checks. Despite the great ease of handling these drugs, we soon realized the need for follow-up models that would allow the appropriateness and safety of these pharmacological treatments to be monitored over time.

View Article and Find Full Text PDF

Diagnostics often require specialized equipment and trained personnel in laboratory settings, creating a growing need for point-of-care tests (POCTs). Among the genetic testing methods available, Loop-mediated Isothermal Amplification (LAMP) offers a viable solution for developing genetic POCT due to its compatibility with simplified devices. This study aimed to create a genetic test that integrates all steps from sample processing to analyzing results while minimizing the complexity, handling, equipment, and time required.

View Article and Find Full Text PDF

High-altitude regions are prone to plateau erythrocytosis due to unique geo-climatic conditions such as low oxygen, high altitude, and low temperatures, with significantly higher incidences of hyperlipidemia and hyperuricemia compared to lowland areas. However, the extreme environmental conditions at high altitudes and the elevated hematocrit levels in blood samples from these populations present significant challenges to the applicability of existing point-of-care testing (POCT) devices. This study describes the development, early clinical validation, and potential clinical impact of three portable, paper-based photochemical biosensing platforms specifically designed for use at high altitudes to monitor hemoglobin, lipids, and uric acid in blood samples.

View Article and Find Full Text PDF

One-Pot Assay Based on CRISPR/Cas13a Technology for HEV RNA Point-of-Care Testing.

J Med Virol

December 2024

Beijing Institute of Hepatology/Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China.

Hepatitis E virus (HEV) poses a serious threat to both public health and animal food safety, thereby highlighting the demands for rapid, sensitive, and easy-to-use detection. This study aimed to develop a One-Pot assay using CRISPR/Cas13a for detecting HEV RNA, suitable for point-of-care testing (POCT) in resource-limited settings. CRISPR/Cas13a combined with reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription recombinase-aided amplification (RT-RAA) was applied to a One-Pot assay device.

View Article and Find Full Text PDF

CRISPR/Cas12a-Enabled Amplification-Free Colorimetric Visual Sensing Strategy for Point-of-Care Diagnostics of Biomarkers.

Anal Chem

December 2024

Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China.

CRISPR/Cas12a-based biosensors have garnered significant attention in the field of point-of-care testing (POCT), yet the majority of the CRISPR-based POCT methods employ fluorescent systems as report probes. Herein, we report a new CRISPR/Cas12a-enabled multicolor visual biosensing strategy for the rapid detection of disease biomarkers. The proposed assay provided vivid color responses to enhance the accuracy of visual detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!