Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein.

Blood

Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway.

Published: September 2010

Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid and/or arsenic trioxide represents a paradigm in targeted cancer therapy because these drugs cause clinical remission by affecting the stability of the fusion oncoprotein promyelocytic leukemia (PML)/retinoic acid receptor alpha (RARA). The authors of previous studies have implicated the ubiquitin-proteasome pathway as the main mechanism involved in therapy-induced PML/RARA degradation. Here we have investigated a role of autophagy, a protein degradation pathway that involves proteolysis of intracellular material within lysosomes. We found that both all-trans retinoic acid and arsenic trioxide induce autophagy via the mammalian target of rapamycin pathway in APL cells and that autophagic degradation contributes significantly both to the basal turnover as well as the therapy-induced proteolysis of PML/RARA. In addition, we observed a correlation between autophagy and therapy-induced differentiation of APL cells. Given the central role of the PML/RARA oncoprotein in APL pathogenesis, this study highlights an important role of autophagy in the development and treatment of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2010-01-261040DOI Listing

Publication Analysis

Top Keywords

pml/rara oncoprotein
8
promyelocytic leukemia
8
all-trans retinoic
8
retinoic acid
8
arsenic trioxide
8
role autophagy
8
apl cells
8
autophagy
5
autophagy contributes
4
therapy-induced
4

Similar Publications

An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.

View Article and Find Full Text PDF

Background: Acute promyelocytic leukemia (APL) is characterized by abnormal promyelocytes and t(15;17)(q24;q21) . Rarely, patients may have cryptic or variant rearrangements. All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) is largely curative provided that the diagnosis is established early.

View Article and Find Full Text PDF

Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.

Brief Bioinform

November 2024

Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) accounts for approximately 10-15% of newly diagnosed acute myeloid leukemia cases and presents with coagulopathy and bleeding. Prompt diagnosis and treatment are required to minimize early mortality in APL as initiation of all-trans retinoic acid therapy rapidly reverses coagulopathy. The fusion is a hallmark of APL and its rapid identification is essential for rapid initiation of specific treatment to prevent early deaths from coagulopathy and bleeding and optimize patient outcomes.

View Article and Find Full Text PDF

Epigenetic Therapies.

Cold Spring Harb Perspect Med

December 2024

Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA

Epigenetic therapies are emerging for pediatric cancers. Due to the relatively low mutational burden in pediatric tumors, epigenetic dysregulation and differentiation blockade is a hallmark of oncogenesis in some childhood cancers. By targeting epigenetic regulators that maintain tumor cells in a primitive developmental state, epigenetic therapies may induce differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!