Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanisms providing for temporally complex patterns of maternal mRNA translation after fertilization are poorly understood. We employed bioinformatics analysis to compare populations of mRNAs enriched specifically on polysomes at the metaphase II (MII) stage oocyte and late one-cell stages and a detailed deletion/truncation series to identify elements that regulate translation. We used the Bag4 3' untranslated region (UTR) as a model. Bioinformatics analysis revealed one conserved motif, subsequently confirmed by functional studies to be a key translation repressor element. The deletion/truncation studies revealed additional regulatory motifs, most notably a strong translation activator element of <30 nt. Analysis of mRNA secondary structure suggests that secondary structure plays a key role in translation repression. Additional bioinformatics analysis of the regulated mRNA population revealed a diverse collection of regulatory motifs found in small numbers of mRNAs, highlighting a high degree of sequence diversity and combinatorial complexity in the overall control of the maternal mRNA population. We conclude that translational control after fertilization is driven primarily by negative regulatory mechanisms opposing strong translational activators, with stage-specific release of the inhibitory influences to permit recruitment. The combination of bioinformatics analysis and deletion/truncation studies provides the necessary approach for dissecting postfertilization translation regulatory mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957265 | PMC |
http://dx.doi.org/10.1152/ajpcell.00166.2010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!