Extreme temperature episodes and mortality in Yakutsk, East Siberia.

Rural Remote Health

Institute of Forecasting, Russian Academy of Sciences, Moscow, Russia.

Published: October 2010

Introduction: Although the health impacts of heat waves and, to a lesser extent, cold spells in big cities in moderate climates have been well documented, little is known about the same impacts in the circumpolar region. An epidemiological study in an Arctic town presents considerable difficulties for the statistician because of small population sizes. When daily mortality counts are mostly 0, 1 or 2, they are not normally distributed and do not fit the independence assumption. The aim of this study was to take these difficulties into account and assess the impacts of extreme temperature events on mortality rates in Yakutsk, a city with a strongly continental climate, situated near the north pole.

Method: Long-term distributions of daily mean temperatures were analyzed for identification of heat waves and cold spells during the study period of 1999 to 2007. The authors investigated daily mortality from all non-accidental causes, coronary heart disease and cerebrovascular causes among the age groups 30-64 years and 65 years and over. Statistical analysis was in two steps. Step 1 involved Student's t-tests of samples, which consisted of cumulative mortalities during each heat wave. This provided a measure of the average health effect of all identified heat waves, and the same analysis was performed separately for cold spells. At Step 2, the authors compared the observed cumulative mortality during each individual temperature wave with expected seasonal mortality, using chi(2) tests.

Results: The analysis of the impacts of six heat waves and three cold spells provided sufficient evidence that cardiovascular and non-accidental mortalities increased in Yakutsk during both heat waves and cold spells. The magnitude of established health effects was approximately the same for heat and cold. No significant differences were found between the two analyzed age groups in terms of relative excess mortality. Coronary heart disease mortality increased more than two-fold during some of the identified temperature waves, while non-accidental mortality increased by approximately 50%. The time lags between the temperature wave and observed increase in mortality varied between 8 and 14 days, which indicated that the health effects of temperature extremes were delayed rather than immediate. The evidence obtained of the effects of temperature waves on cerebrovascular mortality was not conclusive. Addressing the methodological implications of dealing with small cities, the authors linked the sensitivity of the applied statistical tests to arithmetic means and relative standard deviations of daily death counts, and to the duration of temperature waves.

Conclusions: The proposed methodology can be applied in other medium-sized towns (populations >200,000, approximately); however, only large relative increases in mortality will be statistically significant. For example, relative risks of less than 2.0 for coronary disease mortality and 1.4 for non-accidental mortality are likely to be non-significant.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heat waves
20
cold spells
20
mortality
14
extreme temperature
8
impacts heat
8
daily mortality
8
waves cold
8
mortality non-accidental
8
coronary heart
8
heart disease
8

Similar Publications

Investigation of Er-Doped BaF Single Crystals for Infrared Emission and Photovoltaic Efficiency Enhancement.

Luminescence

January 2025

Department of Physics, IMN, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain.

Er-doped BaF single crystals were investigated with two primary aims: first, to probe the infrared emissions from the I level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er-doped BaF single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm.

View Article and Find Full Text PDF

This study aimed to evaluate ocular surface temperature (OST) in post-COVID-19 patients with different degrees of fever via infrared thermal imaging. There were 16 participants (32 eyes) in the control group, 22 participants (44 eyes) in the moderate and low post-COVID-19 fever group (M & L fever group), and 18 participants (36 eyes) in the high post-COVID-19 fever group (H fever group). All participants underwent an ophthalmic slit lamp examination and ocular thermography.

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Application of a near-infrared viscosity-responsive fluorescent probe for lysosomal targeting in fatty liver mice.

Bioorg Chem

February 2025

Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. Electronic address:

Viscosity is a fundamental property in biological systems, influencing organelle function and molecular diffusion. Abnormal viscosity is associated with diseases such as metabolic disorders, neurodegeneration, and cancer. Lysosomes, central to cellular degradation and recycling, are sensitive to viscosity changes, which can disrupt enzymatic activity and cellular homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!