Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a method for determining molecular orientation from second-order nonlinear light scattering experiments. Our modeling shows that there is an optimal angular region, for which the scattering pattern is most sensitive to molecular orientation. We show that molecular orientation can be retrieved from measuring intensities at different polarization combinations, measuring the relative amplitudes of different vibrational modes of the same moiety and by analyzing the shape of the angular scattering pattern. We further show that for C(2v) and C(3v) point groups, the asymmetric stretch mode displays a higher sensitivity to molecular orientation than the corresponding symmetric mode. We have implemented the model in an interactive simulation program that may be found at http://www.mf.mpg.de/en/abteilungen/roke/simulation.html.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3429969 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!