Identification and characterization of a novel bacterial ATP-sensitive K+ channel.

J Microbiol

Department of Biological Sciences, Ajou University, Suwon, 443-749, Republic of Korea.

Published: June 2010

Five bacterial species that are most likely to have putative prokaryotic inward rectifier K(+) (Kir) channels were selected by in silico sequence homology and membrane topology analyses with respect to the number of transmembrane domains (TMs) and the presence of K(+) selectivity filter and/or ATP binding sites in reference to rabbit heart inward rectifier K(+) channel (Kir6.2). A dot blot assay with genomic DNAs when probed with whole rabbit Kir6.2 cDNA further supported the in silico analysis by exhibiting a stronger hybridization in species with putative Kir's compared to one without a Kir. Among them, Chromobacterium violaceum gave rise to a putative Kir channel gene, which was PCR-cloned into the bacterial expression vector pET30b(+), and its expression was induced in Escherichia coli and confirmed by gel purification and immunoblotting. On the other hand, this putative bacterial Kir channel was functionally expressed in Xenopus oocytes and its channel activity was measured electrophysiologically by using two electrode voltage clamping (TEVC). Results revealed a K(+) current with characteristics similar to those of the ATP-sensitive K(+) (K-ATP) channel. Collectively, cloning and functional characterization of bacterial ion channels could be greatly facilitated by combining the in silico analysis and heterologous expression in Xenopus oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-010-9231-9DOI Listing

Publication Analysis

Top Keywords

species putative
8
silico analysis
8
kir channel
8
xenopus oocytes
8
channel
6
bacterial
5
identification characterization
4
characterization novel
4
novel bacterial
4
bacterial atp-sensitive
4

Similar Publications

Pathogenic are spirochetes that cause leptospirosis, a worldwide zoonotic disease. Leptospirosis affects humans and animals, with approximately 1 million human infections and 60,000 deaths per year. The diversity of leptospiral strains and serovars allied to the fact that pathogenesis is not yet fully understood, make the development of an effective vaccine against leptospirosis a challenge.

View Article and Find Full Text PDF

The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes.

View Article and Find Full Text PDF

Intraspecific variation is important for species' long-term persistence in changing environments. Conservation strategies targeting intraspecific variation often rely on the identification of management or policy units below the species level based on biological differences among populations. To identify management units, this paper examines intraspecific divergence of Lake Trout (Salvelinus namaycush) in Great Slave Lake (GSL), Canada, using low-coverage whole-genome sequencing data.

View Article and Find Full Text PDF

Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.

View Article and Find Full Text PDF

Haematological deterioration of Hematodinium-infected decapod crustaceans.

Dev Comp Immunol

December 2024

Zoology and Ryan Institute, School of Natural Sciences, University of Galway, Galway H91 TK33, Ireland. Electronic address:

Parasitic dinoflagellates, namely Hematodinium spp., infect a growing number of decapod crustacean species worldwide. These parasites represent a longstanding concern for fisheries in Europe and North America, and an emerging concern for aqua/polyculture systems in Asia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!