A lichen transplant study aimed at investigating a strong increase in mercury concentrations in lichens was run in a territory of NE Italy where background values were very low only 8 years before. Thalli of the lichen Pseudevernia furfuracea collected in a pristine area were exposed for 1.5, 3 and 6 months at 31 sites selected according to the observed pattern of Hg concentrations, location of the suspected source (a new waste incinerator) and prevailing wind direction. Hg strongly increased at eight sites after 1.5 months, at 12 after 3 months and at 20 after 6 months. The highest values were always located SW and S of the incinerator, in good agreement with the prevailing night wind direction. It was concluded that, although the immediate risk for the population living close to the incinerator is low, long-term hazard due to Hg accumulation in the surrounding environment should be seriously taken into account.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-010-1553-xDOI Listing

Publication Analysis

Top Keywords

wind direction
8
lichen transplants
4
transplants suitable
4
suitable tool
4
tool identify
4
identify mercury
4
mercury pollution
4
pollution waste
4
waste incinerators
4
incinerators case
4

Similar Publications

This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.

View Article and Find Full Text PDF

Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.

View Article and Find Full Text PDF

Background: Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by systematically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises substantial concerns. The most direct way of understanding this trade-off between wildfire risk reduction and prescribed fire escapes is to explore patterns in the historical prescribed fire records.

View Article and Find Full Text PDF

Human-Caused High Direct Mortality in Birds: Unsustainable Trends and Ameliorative Actions.

Animals (Basel)

December 2024

School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.

Human interaction with birds has never been more positive and supported by so many private citizens and professional groups. However, direct mortality of birds from anthropogenic causes has increased and has led to significant annual losses of birds. We know of the crucial impact of habitat loss on the survival of birds and its effects on biodiversity.

View Article and Find Full Text PDF

Optimizing the installation parameters of photovoltaic panels in a photovoltaic array to reduce dust accumulation, thereby enhancing their power generation, is a crucial research topic in the construction of solar power stations in desert regions. Utilizing a series of wind tunnel experiments on a photovoltaic array comprising four equally sized panels, this study assessed how variations in tilt angle, mounting height, spacing, and incoming flow direction influence both the accumulation mass of dust and the particle size distribution in a photovoltaic array. The results indicate that the dust accumulation on the first panel exponential growth with increasing tilt angle, incoming flow angles, and height, while subsequent panels displayed a trend of initial increase followed by a decrease, with a maximum increasing ratio achieved at specific installation configurations, the difference of dust mass on each panel can even be several times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!