Amphotericin B is a powerful but toxic drug used against fungal infections and leishmaniases. These diseases would be treated more effectively if non-toxic amphotericin derivatives could be produced on a large scale at low cost. Genetic manipulation of the amphotericin B producer, Streptomyces nodosus, has previously led to the detection and partial characterisation of 8-deoxyamphotericin B, 16-descarboxyl-16-methyl-amphotericin B, 15-deoxy-16-descarboxyl-16-methyl-15-oxo-amphotericin B, 7-oxo-amphotericin B and pentaene analogues. Here we report improved production and purification protocols that have allowed detailed chemical analyses of these compounds. The polyketide synthase product 8-deoxy-16-descarboxyl-16-methyl-amphoteronolide B was identified for the first time. In addition, the ketoreductase 10 domain of the polyketide synthase was specifically inactivated by targeted gene replacement. The resulting mutants produced truncated polyketide intermediates as linear polyenyl-pyrones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b922074g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!