Imaging coherent transport in graphene. Part II: probing weak localization.

Nanotechnology

School of Engineering and Applied Science, and Department of Physics, Harvard University, Cambridge, MA 02138, USA.

Published: July 2010

Graphene has opened new avenues of research in quantum transport, with potential applications for coherent electronics. Coherent transport depends sensitively on scattering from microscopic disorder present in graphene samples: electron waves traveling along different paths interfere, changing the total conductance. Weak localization is produced by the coherent backscattering of waves, while universal conductance fluctuations are created by summing over all paths. In this work, we obtain conductance images of weak localization with a liquid-He-cooled scanning probe microscope, by using the tip to create a movable scatterer in a graphene device. This technique allows us to investigate coherent transport with a probe of size comparable to the electron wavelength. Images of magnetoconductance versus tip position map the effects of disorder by moving a single scatterer, revealing how electron interference is modified by the tip perturbation. The weak localization dip in conductivity at B = 0 is obtained by averaging magnetoconductance traces at different positions of the tip-created scatterer. The width Delta B(WL) of the dip yields an estimate of the electron coherence length L(phi) at fixed charge density. This 'scanning scatterer' method provides a new way of investigating coherent transport in graphene by directly perturbing the disorder configuration that creates these interferometric effects.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/27/274014DOI Listing

Publication Analysis

Top Keywords

coherent transport
16
weak localization
16
transport graphene
8
transport
5
graphene
5
coherent
5
imaging coherent
4
graphene probing
4
weak
4
probing weak
4

Similar Publications

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Ion channels are protein structures that facilitate the selective passage of ions across the membrane cells of living organisms. They are known for their high conductance and high selectivity. The precise mechanism between these two seemingly contradicting features is not yet firmly established.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the dynamic changes in aqueous concentrations of angiopoietin (Ang)-1/2 and vascular endothelial growth factor (VEGF) during injection in treatment-naïve patients with diabetic macular edema (DME) receiving faricimab during the induction phase (3 consecutive monthly doses) and retrospectively analyze the data.

Methods: Thirty-five eyes of 26 patients (age = 63.1 ± 12.

View Article and Find Full Text PDF

Non-Hermitian Theory of Valley Excitons in Two-Dimensional Semiconductors.

Phys Rev Lett

December 2024

School of Physics and Electronics, Hunan University, Changsha 410082, China.

Electron-hole exchange interaction in two-dimensional transition metal dichalcogenides is extremely strong due to the dimension reduction, which promises valley-superposed excitonic states with linearly polarized optical emissions. However, strong circular polarization reflecting valley-polarized excitonic states is commonly observed in helicity-resolved optical experiments. Here, we present a non-Hermitian theory of valley excitons by incorporating optical pumping and intrinsic decay, which unveils an anomalous valley-polarized excitonic state with elliptically polarized optical emission.

View Article and Find Full Text PDF

Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs.

Natl Sci Rev

December 2024

State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.

The Mott-Ioffe-Regel limit sets the lower bound of the carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of the quasiparticle scattering rate, such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!