In higher plants, the plastidial NADH dehydrogenase (Ndh) complex supports nonphotochemical electron fluxes from stromal electron donors to plastoquinones. Ndh functions in chloroplasts are not clearly established; however, its activity was linked to the prevention of the overreduction of stroma, especially under stress conditions. Here, we show by the characterization of Orr(Ds), a dominant transposon-tagged tomato (Solanum lycopersicum) mutant deficient in the NDH-M subunit, that this complex is also essential for the fruit ripening process. Alteration to the NDH complex in fruit changed the climacteric, ripening-associated metabolites and transcripts as well as fruit shelf life. Metabolic processes in chromoplasts of ripening tomato fruit were affected in Orr(Ds), as mutant fruit were yellow-orange and accumulated substantially less total carotenoids, mainly beta-carotene and lutein. The changes in carotenoids were largely influenced by environmental conditions and accompanied by modifications in levels of other fruit antioxidants, namely, flavonoids and tocopherols. In contrast with the pigmentation phenotype in mature mutant fruit, Orr(Ds) leaves and green fruits did not display a visible phenotype but exhibited reduced Ndh complex quantity and activity. This study therefore paves the way for further studies on the role of electron transport and redox reactions in the regulation of fruit ripening and its associated metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910969 | PMC |
http://dx.doi.org/10.1105/tpc.110.074716 | DOI Listing |
Front Microbiol
December 2024
Department of Biotechnology, Delft University of Technology, Delft, Netherlands.
Mitochondria from harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three Type II NADH dehydrogenases (NDH-2). To investigate the physiological role, localization and substrate specificity of these enzymes, the growth of various NADH dehydrogenase knockout mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. NAD(P)H:quinone oxidoreduction of the three NDH-2 were individually assessed.
View Article and Find Full Text PDFPlant Physiol
December 2024
Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany.
The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
November 2024
Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine. Electronic address:
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
Plant J
December 2024
Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
Cyclic electron transport around photosystem I (PSI) is essential for the protection of the photosynthetic apparatus in plants under diverse light conditions. This process is primarily mediated by Proton Gradient Regulation 5 protein/Proton Gradient Regulation 5-like photosynthetic phenotype 1 protein (PGR5/PGRL1) and NADH dehydrogenase-like complex (NDH). In angiosperms, NDH interacts with two PSI complexes through distinct monomeric antennae, LHCA5 and LHCA6, which is crucial for its higher stability under variable light conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!