Sm proteins specify germ cell fate by facilitating oskar mRNA localization.

Development

Departments of Biology and Genetics, Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.

Published: July 2010

Sm and Sm-like proteins are RNA-binding factors found in all three domains of life. Eukaryotic Sm proteins play essential roles in pre-mRNA splicing, forming the cores of spliceosomal small nuclear ribonucleoproteins (snRNPs). Recently, Sm proteins have been implicated in the specification of germ cells. However, a mechanistic understanding of their involvement in germline specification is lacking and a germline-specific RNA target has not been identified. We demonstrate that Drosophila SmB and SmD3 are specific components of the oskar messenger ribonucleoprotein (mRNP), proper localization of which is required for establishing germline fate and embryonic patterning. Importantly, oskar mRNA is delocalized in females harboring a hypomorphic mutation in SmD3, and embryos from mutant mothers are defective in germline specification. We conclude that Sm proteins function to establish the germline in Drosophila, at least in part by mediating oskar mRNA localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889603PMC
http://dx.doi.org/10.1242/dev.042721DOI Listing

Publication Analysis

Top Keywords

oskar mrna
12
mrna localization
8
germline specification
8
proteins
5
proteins germ
4
germ cell
4
cell fate
4
fate facilitating
4
oskar
4
facilitating oskar
4

Similar Publications

Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated in vitro, a nuanced understanding of how their assembly is regulated in vivo remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in Drosophila melanogaster egg chambers.

View Article and Find Full Text PDF

An architectural role of specific RNA-RNA interactions in oskar granules.

Nat Cell Biol

November 2024

Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Ribonucleoprotein (RNP) granules are membraneless condensates that organize the intracellular space by compartmentalization of specific RNAs and proteins. Studies have shown that RNA tunes the phase behaviour of RNA-binding proteins, but the role of intermolecular RNA-RNA interactions in RNP granules in vivo remains less explored. Here we determine the role of a sequence-specific RNA-RNA kissing-loop interaction in assembly of mesoscale oskar RNP granules in the female Drosophila germline.

View Article and Find Full Text PDF

Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development.

View Article and Find Full Text PDF

Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated , a nuanced understanding of how their assembly is regulated remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in egg chambers.

View Article and Find Full Text PDF

Biomolecular condensates organize biochemical processes at the subcellular level and can provide spatiotemporal regulation within a cell. Among these, ribonucleoprotein (RNP) granules are storage hubs for translationally repressed mRNA. Whether RNP granules can also activate translation and how this could be achieved remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!