Ground-level ozone (O(3)) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O(3)-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O(3) exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O(3) levels. Elevated O(3) significantly weakened the C sink strength of the tree-soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O(3) responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O(3) can substantially mitigate the C sequestration of forests in view of climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2010.05.009 | DOI Listing |
Polymers (Basel)
December 2024
Hunan Mine Carbon Sequestration and Sink Enhancement Engineering Technology Research Center, Changsha 410151, China.
As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China.
Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France.
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates.
View Article and Find Full Text PDFEcology
December 2024
Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO fluxes in three tundra habitats varying in soil moisture and plant-community composition.
View Article and Find Full Text PDFWater Res
November 2024
Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!