The dynamics of chymotrypsin inhibitor 2 (CI2) in water, as well as in 10M urea, have been studied by Molecular Dynamics simulations. The analysis aims at investigating how local protein processes are affected by urea and how the perturbation by urea on the local level manifests itself in the kinetics of the global unfolding. The results show that the effect of urea on local processes depends upon the type of process at hand. An isolated two-residue contact on the surface of CI2 has a decreased frequency of rupture in the urea solvent. This is in contrast to the increased frequency of rupture of the hydrogen bonds in secondary structure elements in the urea solvent. It is proposed that the increase in the unfolding rates of complex protein processes is based upon the retardation of the refolding rate of small scale, isolated processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2010.05.004DOI Listing

Publication Analysis

Top Keywords

chymotrypsin inhibitor
8
protein processes
8
urea local
8
frequency rupture
8
urea solvent
8
urea
6
processes
5
affect urea
4
urea kinetics
4
local
4

Similar Publications

Development of novel epoxyketone macrocyclic peptidyl proteasome inhibitors through OPA-mediated one-step cyclization of unprotected peptides.

Bioorg Chem

January 2025

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province School of Medicine Hangzhou City University China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang Province, China. Electronic address:

Cyclization is a pivotal strategy for enhancing the drug-like characteristics of polypeptides. To develop potent and metabolically stable proteasome inhibitors, we generated a macrocyclic peptide skeleton using a straightforward and efficient cyclization strategy. Subsequent stability assessments confirmed the practicality of this approach.

View Article and Find Full Text PDF

Background: Ensitrelvir is a novel SARS-CoV-2 3-chymotrypsin-like protease inhibitor, similar to nirmatrelvir/ritonavir. Several case reports have demonstrated the efficacy of 3-chymotrypsin-like protease inhibitors in treating prolonged coronavirus disease 2019 (COVID-19) in immunocompromised patients. Tacrolimus (TAC) is a widely used immunosuppressive agent whose blood level can increase significantly due to the inhibition of cytochrome P450 3A (CYP3A) and P-glycoprotein by nirmatrelvir/ritonavir.

View Article and Find Full Text PDF

Tandem duplication of genes can play a critical role in the evolution of functional novelty, but our understanding is limited concerning gene duplication's role in coevolution between species. Much is known about the evolution and function of tandemly duplicated snake venom genes, however the potential of gene duplication to fuel venom resistance within prey species is poorly understood. In this study, we characterize patterns of gene duplication of the SERPINA subfamily of genes across in vertebrates and experimentally characterize functional variation in the SERPINA3-like paralogs of a wild rodent.

View Article and Find Full Text PDF

Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.

View Article and Find Full Text PDF

Replacement of a single residue changes the primary specificity of thrombin.

Fertil Steril

January 2025

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA. Electronic address:

Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.

Objective: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!