Background: Alcohol abuse leads to marked disruptions of circadian rhythms, and these disturbances in themselves can increase the drive to drink. Circadian clock timing is regulated by light, as well as by nonphotic influences such as food, social interactions, and wheel running. We previously reported that alcohol markedly disrupts photic and nonphotic modes of circadian rhythm regulation in Syrian hamsters. As an extension of this work, we characterize the hedonic interrelationship between wheel running and ethanol (EtOH) intake and the effects of environmental circadian disruption (long-term exposure to constant light [LL]) on the drive to drink.

Methods: First, we tested the effect of wheel running on chronic free-choice consumption of a 20% (v/v) EtOH solution and water. Second, the effect of this alcohol drinking on wheel running in alcohol-naive animals was investigated. Third, we assessed the influence of LL, known to suppress locomotor activity and cause circadian rhythm disruption, on EtOH consumption and wheel-running behavior.

Results: Inhibitory effects of wheel running on EtOH intake and vice versa were observed. Exposure to LL, while not affecting EtOH intake, induced rhythm splitting in 75% of the animals. Notably, the splitting phenotype was associated with lower levels of EtOH consumption and preference prior to, and throughout, the period of LL exposure.

Conclusions: These results are evidence that exercise may offer an efficacious clinical approach to reducing EtOH intake. Also, predisposition for light-induced (or other) forms of circadian disruption may modulate the drive to drink.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929273PMC
http://dx.doi.org/10.1111/j.1530-0277.2010.01251.xDOI Listing

Publication Analysis

Top Keywords

wheel running
24
etoh intake
16
effects wheel
8
constant light
8
drive drink
8
circadian rhythm
8
circadian disruption
8
etoh consumption
8
etoh
7
wheel
6

Similar Publications

The integration of exercise prescriptions into cancer adjuvant therapy presents challenges stemming from the ambiguity surrounding the precise mechanism through which exercise intervention mitigates the risk of hepatocellular carcinoma (HCC) mortality and recurrence. Elucidation of this specific mechanism has substantial social and clinical implications. In this study, tumor-bearing mice engaged in voluntary wheel running exhibited a notable decrease in tumor growth, exceeding 30%.

View Article and Find Full Text PDF

Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.

View Article and Find Full Text PDF

The efficacy of early rehabilitation in enhancing vestibular compensation in mice with unilateral vestibular neurectomy by promoting cellular proliferation and glial reaction.

Neuroscience

January 2025

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China. Electronic address:

Acute peripheral vestibular dysfunction is associated with a variety of postural and balance disturbances. Vestibular rehabilitation training (VRT) is widely acknowledged as an effective intervention for promoting vestibular compensation. Nevertheless, the broader implementation of early VRT is hindered by an incomplete understanding of its neurobiological mechanisms.

View Article and Find Full Text PDF

Gene Expression After Exercise Is Disrupted by Early-Life Stress.

Dev Psychobiol

January 2025

Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA.

Exercise can be leveraged as an important tool to improve neural and psychological health, either on its own or to bolster the efficacy of evidence-based treatment modalities. Research in both humans and animal models shows that positive experiences, such as exercise, promote neuroprotection while, in contrast, aversive experiences, particularly those in early development, are often neurologically and psychologically disruptive. In the current study, we employed a preclinical model to investigate the therapeutic benefits of exercise on gene expression in the brains of adult rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!