The first molecular material with the coexistence of ferromagnetism, metal-like conductivity, and chirality has been prepared using an organic/inorganic approach. In this case, a two-dimensional packing of chiral organic radical cations (responsible for both the electrical conductivity and optical activity) was assembled with a layered bimetallic oxalate-based anionic network (responsible for the magnetic properties). Shubnikov-de Haas oscillations confirmed the presence of a Fermi surface even when the transport properties suggested "insulating"-type behavior at very low temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja103147k | DOI Listing |
Mater Horiz
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless chiral edge channels, which is of fundamental interest and promising for applications in spintronics. However, QAHE is currently limited in two-dimensional (2D) ferromagnets with Chern number . Using a tight-binding model, we put forward that Floquet engineering offers a strategy to achieve QAHE in 2D nonmagnets, and, in contrast to generally reported QAHE in 2D ferromagnets, a high-Chern-number is obtained accompanied by the emergence of two chiral edge states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
Two-dimensional van der Waals (2D vdW) materials have attracted widespread research interest due to their unique physical properties and potential application prospects. In this study, an atomistic-level dynamical simulation method is employed to investigate the chirality of antiferromagnetic resonance modes in CrI bilayer. Beyond the typical observations of a linear increase in high-frequency resonance mode and a linear decrease in low-frequency resonance mode, we have identified a distinct magnetization precession chirality in the CrI bilayer at low magnetic fields: Spins in different layers exhibit opposite precession chirality.
View Article and Find Full Text PDFSci Rep
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.
Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.
Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!