Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es100411w | DOI Listing |
Sci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFSci Total Environ
January 2025
CNR-Institute of Atmospheric Pollution Research, Rende Division, UNICAL Polifuzionale, Rende 87036, CS, Italy.
This study provides a review of 13 oceanographic campaigns between 2000 and 2017 to measure Hg in the Mediterranean, highlighting major findings from measurement and modelling activities during the Med-Oceanor program. The initial campaigns showed that high concentrations of RGM could be found far from industrial source regions and the observed daily variation in concentration, with peaks at midday and lower concentrations during darkness gave the first indications that photochemically mediated oxidation reactions were producing RGM in the MBL. Later atmospheric chemistry modelling studies showed the feasibility of Hg oxidation by bromine containing oxidants, which are released as a result of the acidification of sea salt aerosols in the Marine Boundary Layer (MBL).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, 70118, USA.
Mercury (Hg) contamination poses a persistent threat to the remote Arctic ecosystem, yet the mechanisms driving the pronounced summer rebound of atmospheric gaseous elemental Hg (Hg) and its subsequent fate remain unclear due to limitations in large-scale seasonal studies. Here, we use an integrated atmosphere-land-sea-ice-ocean model to simulate Hg cycling in the Arctic comprehensively. Our results indicate that oceanic evasion is the dominant source (~80%) of the summer Hg rebound, particularly driven by seawater Hg release facilitated by seasonal ice melt (~42%), with further contributions from anthropogenic deposition and terrestrial re-emissions.
View Article and Find Full Text PDFSci Total Environ
February 2025
Université Paris Cité - Institut de Physique du globe de Paris, CNRS, F75005 Paris, France.
Nanoparticles (NPs) exhibit high reactivity and mobility in the environment, and a significant capacity to penetrate living organisms, potentially leading to harmful effects. Volcanoes are the second major source of natural NPs emitted into the atmosphere, with an estimated flux of 342 Tg/year. Few studies have focused on their fate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!