Our aim was to investigate the biosorption of Pb2+, Hg2+, Cd2 from aqueous solution by Aspergillus terreus (both free and immobilized on loofa sponge discs). Our results show that the adsorption capacity of fungal biomass on loofa sponge (FBLS) is superior to free fungal biomass (FFB). The adsorption selectivity by FBLS was in the order Pb2+>Hg2+>Cd2+. The maximum metal ions adsorbed was 247.2, 37.7, 23.8 mg/g FBLS for Pb2+, Hg2+ and Cd2+, respectively. Metal uptake by FBLS was affected by the pH of the metal solution, but independent of temperature (10-50 degrees C). The Langmuir model was more suitable than the Freundlich model to describe the biosorption process of FBLS. The regenerated FBLS was found to be effective for repeated use for five cycles without significant loss in adsorption capacity. This research demonstrates that FBLS possesses excellent capacity for Pb2+ biosorption from aqueous solution and industrial wastewaters.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aspergillus terreus
8
pb2+ hg2+
8
aqueous solution
8
loofa sponge
8
adsorption capacity
8
fungal biomass
8
fbls
7
biosorption
4
biosorption lead
4
lead mercury
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!