Mammalian ovary is metabolically active organ and generates by-products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) on an extraordinary scale. Both follicular somatic cells as well as oocyte generate ROS and RNS synchronously and their effects are neutralized by intricate array of antioxidants. ROS such as hydrogen peroxide (H(2)O(2)) and RNS such as nitric oxide (NO) act as signaling molecules and modulate various aspects of oocyte physiology including meiotic cell cycle arrest and resumption. Generation of intraoocyte H(2)O(2) can induce meiotic resumption from diplotene arrest probably by the activation of adenosine monophosphate (AMP)-activated protein kinase A (PRKA)-or Ca(2+)-mediated pathway. However, reduced intraoocyte NO level may inactivate guanylyl cyclase-mediated pathway that results in the reduced production of cyclic 3',5'-guanosine monophosphate (cGMP). The reduced level of cGMP results in the activation of cyclic 3',5'-adenosine monophosphate (cAMP)-phosphodiesterase 3A (PDE3A), which hydrolyses cAMP. The reduced intraoocyte cAMP results in the activation of maturation promoting factor (MPF) that finally induces meiotic resumption. Thus, a transient increase of intraoocyte H(2)O(2) level and decrease of NO level may signal meiotic resumption from diplotene arrest in mammalian oocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.22736 | DOI Listing |
Reprod Biol
December 2024
Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kustogen, Chuncheon 24341, Republic of Korea. Electronic address:
During in vitro maturation (IVM), median antral follicles (MAFs) were mechanically aspirated from the porcine ovarian cortex, and this process causes an early disconnection of follicular somatic cells from oocytes within antral follicles before the formation of graafian follicles. Thus, nuclear maturation is accelerated ahead of the completion of cytoplasmic maturation. Dibutyryl-cAMP (dbcAMP), a well-known cAMP modulator, is used to inhibit the resumption of meiosis in immature oocytes.
View Article and Find Full Text PDFAdv Biol (Weinh)
October 2024
Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
Oocyte meiotic errors can cause infertility, miscarriage, and birth defects. Here the role and the underlying mechanism of p21 activated kinase 4 (PAK4) in mouse oocyte meiosis is evaluated. It is found that PAK4 expression and its phosphorylation are detected in high level at germinal vesicle (GV) stage, and gradually decreased after meiotic resumption in oocytes.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2024
Department of Animal Sciences Purdue University West Lafayette, West Lafayette, IN, United States.
Embryo development is stimulated by calcium (Ca) signals that are generated in the egg cytoplasm by the fertilizing sperm. Eggs are formed via oogenesis. They go through a cell division known as meiosis, during which their diploid chromosome number is halved and new genetic combinations are created by crossing over.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China. Electronic address:
CtBP-interacting protein (CtIP) is known for its multifaceted roles in DNA repair and genomic stability, directing the homologous recombination-mediated DNA double-stranded break repair pathway via DNA end resection, an essential error-free repair process vital for genome stability. Mammalian oocytes are highly prone to DNA damage accumulation due to prolonged G2/prophase arrest. Here, we explore the functions of CtIP in meiotic cell cycle regulation via a mouse oocyte model.
View Article and Find Full Text PDFAnim Reprod Sci
November 2024
Federal University of Vale do São Francisco, Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of Vale do São Francisco, Petrolina, PE 56300-990, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!