An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution. The approach is also demonstrated on an aqueous solution of 1-dodecyl-3-methylimidazolium chloride. The monolayer in which the dodecyl chain faces upwards and the Cl(-) anion locates next to the imidazolium ring formed on the water surface was found to be laterally homogeneous. The use of a pixel array detector will be particularly powerful for in situ measurements to investigate both out-of-plane and in-plane structures simultaneously, not only for liquid surfaces but also for other thin films.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0909049510013087DOI Listing

Publication Analysis

Top Keywords

liquid surfaces
12
pixel array
12
array detector
12
specular off-specular
12
simultaneous measurement
8
x-ray specular
8
off-specular reflection
8
x-ray
4
measurement x-ray
4
specular
4

Similar Publications

The performance of the electrocatalytic CO reduction reaction (CORR) is highly dependent on the microenvironment around the cathode. Despite efforts to optimize the microenvironment by modifying nanostructured catalysts or microporous gas diffusion electrodes, their inherent disorder presents a significant challenge to understanding how interfacial structure arrangement within the electrode governs the microenvironment for CORR. This knowledge gap limits fundamental understanding of CORR while also hindering efforts to enhance CORR selectivity and activity.

View Article and Find Full Text PDF

Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force.

View Article and Find Full Text PDF

Topologically reconfigurable nematic emulsions.

Proc Natl Acad Sci U S A

March 2025

School of Physics, University of Hyderabad, Hyderabad 500046, India.

In emulsions of multicomponent fluids, the dispersed phase forms tiny droplets in the continuous phase. In situ control and manipulation to achieve diversity in emulsion droplets for emerging applications is challenging. In a liquid crystal-based emulsion, the surface anchoring of the molecules at the isotropic fluid-liquid crystal interface introduces elastic distortions that result in anisotropic interparticle interactions, similar to electrostatic interactions between multipoles, which also lends a naming analogy as elastic dipoles, quadrupoles, and higher.

View Article and Find Full Text PDF

Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).

Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.

View Article and Find Full Text PDF

The Effect of Deep Cryogenic Treatment on the Electrocatalytic Performance of a Pd@CFs Catalyst for Methanol Oxidation.

Nanomaterials (Basel)

February 2025

School of Materials Science and Engineering, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, China.

To enhance the electrocatalytic performance of a flexible Pd@CFs catalyst for methanol oxidation, deep cryogenic treatment in liquid nitrogen was introduced. The effects of the frequency and time of the deep cryogenic treatment on the surface crystal orientation, microstructure morphology, mechanical performance, and electrocatalytic performance for methanol oxidation were studied. The results showed that when the frequency of the deep cryogenic treatment was 2 times and the deep cryogenic time was 24 h, the electrocatalytic performance of the catalyst was the best.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!