AI Article Synopsis

  • NGF is linked to Alzheimer's due to its role in the health of cholinergic neurons, but this alone doesn't explain the full neurodegeneration seen in the disease.
  • Studies using the AD11 mouse model showed that blocking NGF resulted in neurodegeneration resembling human Alzheimer's features, indicating an imbalance in NGF signaling could be crucial.
  • Further experiments revealed that inhibiting TrkA signaling led to cholinergic deficits and amyloid buildup, while blocking p75NTR signaling alleviated cholinergic issues but worsened tau hyperphosphorylation, highlighting the complex interactions in Alzheimer's progression.

Article Abstract

NGF, the principal neurotrophic factor for basal forebrain cholinergic neurons (BFCNs), has been correlated to Alzheimer's disease (AD) because of the selective vulnerability of BFCNs in AD. These correlative links do not substantiate a comprehensive cause-effect mechanism connecting NGF deficit to overall AD neurodegeneration. A demonstration that neutralizing NGF activity could have consequences beyond a direct interference with the cholinergic system came from studies in the AD11 mouse model, in which the expression of a highly specific anti-NGF antibody determines a neurodegeneration that encompasses several features of human AD. Because the transgenic antibody binds to mature NGF much more strongly than to proNGF and prevents binding of mature NGF to the tropomyosin-related kinase A (TrkA) receptor and to p75 neurotrophin receptor (p75NTR), we postulated that neurodegeneration in AD11 mice is provoked by an imbalance of proNGF/NGF signaling and, consequently, of TrkA/p75NTR signaling. To test this hypothesis, in this study we characterize the phenotype of two lines of transgenic mice, one in which TrkA signaling is inhibited by neutralizing anti-TrkA antibodies and a second one in which anti-NGF mice were crossed to p75NTR(exonIII(-/-)) mice to abrogate p75NTR signaling. TrkA neutralization determines a strong cholinergic deficit and the appearance of beta-amyloid peptide (Abeta) but no tau-related pathology. In contrast, abrogating p75NTR signaling determines a full rescue of the cholinergic and Abeta phenotype of anti-NGF mice, but tau hyperphosphorylation is exacerbated. Thus, we demonstrate that inhibiting TrkA signaling activates Abeta accumulation and that different streams of AD neurodegeneration are related in complex ways to TrkA versus p75NTR signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901482PMC
http://dx.doi.org/10.1073/pnas.1007181107DOI Listing

Publication Analysis

Top Keywords

p75ntr signaling
12
tropomyosin-related kinase
8
p75 neurotrophin
8
neurotrophin receptor
8
signaling
8
mature ngf
8
trka signaling
8
anti-ngf mice
8
ngf
6
neurodegeneration
5

Similar Publications

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Lingo1 in the hippocampus contributes to cognitive dysfunction after anesthesia and surgery in aged mice.

Int J Biol Sci

January 2025

Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Cognitive impairment caused by anesthesia and surgery is one of the most common complications with multiple etiologies that occurs in elderly patients. The underlying mechanisms are not fully understood, and there is a lack of therapeutic strategies. Increasing evidence has demonstrated that myelin loss, abnormal phosphorylation of the tau protein and neuronal apoptosis are substantial driving factors of cognitive deficits.

View Article and Find Full Text PDF

We determined the relative expression levels of the receptors , , , and and ligands , , , and with RNAseq analysis on fetal human inner ear samples, located TrkB and TrkC proteins, and quantified with in situ hybridization on histological sections between gestational weeks (GW) 9 to 19. Spiral ganglion neurons (SGNs) and satellite glia appear to be the main source of and synthesis peaks twice at GW10 and GW15-GW17. Tonotopical gradients of revert between GW8 and GW15 and follow a maturation and innervation density gradient in SGNs.

View Article and Find Full Text PDF

Overexpression of Nogo-A changes nerve growth factor signaling dynamics in PC12 cells.

Cell Signal

December 2024

Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL, USA; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA.

The nerve growth factor (NGF) receptor TrkA is a tightly regulated receptor tyrosine kinase that activates neuronal signaling pathways promoting cell survival in addition to axonal and dendritic outgrowth. Previously, we showed that NGF and TrkA signaling is altered in neuron-like PC12 cells that overexpress Nogo-A, a protein known to influence axonal outgrowth and dendritic arborization associated with neuronal plasticity. In the present report, we provide evidence for changes in NGF-mediated receptor-level and downstream signaling that occur in cells overexpressing Nogo-A.

View Article and Find Full Text PDF
Article Synopsis
  • Depression is a serious mental illness that impacts individuals and society, with unclear causes linked to biological and environmental factors.
  • Brain-derived neurotrophic factor (BDNF) plays a significant role in depression by interacting with two receptors (TrkB and p75NTR) and influencing various signaling pathways.
  • The review highlights the importance of BDNF-related pathways in understanding depression and suggests future treatment strategies based on these interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!