Bone graft substitutes have been developed due to the limited supply and morbidity associated with using autogenous graft material. Allogeneic demineralized bone matrix (DBM) has been used extensively as a clinical graft material because of its inherent osteoinductive and osteoconductive properties. Differential enhancement of these properties may optimize the performance of these products for various orthopedic and craniofacial applications. Commercially available bone paste products consist of formulations that combine DBM with a carrier to facilitate handling and containment. In the present study, we present results of a comprehensive in vitro and in vivo characterization of a 100% human DBM putty product, Puros DBM Putty. Results indicate the DBM particles are completely dispersed in the putty. Data are presented showing the porosity of and cell attachment to Puros DBM Putty, thereby demonstrating the osteoconductive properties of this DBM. Puros DBM Putty was also shown to be osteoinductive in the rat ectopic pouch model. We demonstrate here for the first time that Puros DBM Putty maintains its activity to markedly stimulate or induce bone formation over the entire period of its shelf life. Taken together, these data demonstrate that the 100% human allograft derived Puros DBM Putty could be an effective bone graft substitute.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328210366061DOI Listing

Publication Analysis

Top Keywords

dbm putty
28
puros dbm
20
dbm
11
putty
8
bone graft
8
graft material
8
osteoconductive properties
8
100% human
8
bone
5
puros
5

Similar Publications

Demineralized bone matrix (DBM) is a widely used allograft material for bone repair, but its handling properties and retention at defect sites can be challenging. Hydroxyethyl cellulose (HEC) has shown promise as a biocompatible carrier for bone graft materials. This study aimed to evaluate the efficacy of DBM combined with cancellous bone putty formed using HEC as an allograft material for bone regeneration in a canine tibial defect model.

View Article and Find Full Text PDF

Objectives: The prevention of implant-associated infections is becoming increasingly clinically important in the field of dentistry. Extensive investigations into the development of innovative antibacterial materials that interact effectively to reinforce their functionality are currently being conducted in the biomedical sector. In the present study, a novel dental nano putty (D-nP) has been developed using demineralized bone matrix (DBM), calcium sulfate hemihydrate (CSH), curcumin nanoparticles (CU-NPs), and silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Demineralized bone matrix (DBM) is a decalcified allo/xenograft retaining collagen and noncollagenous proteins, which has been extensively used because of its osteoconductive and osteoinductive properties. Calcium sulfate (CaSO, CS) is a synthetic bone substitute used in bone healing with biocompatible, nontoxic, bioabsorbable, osteoconductive, and good mechanical characteristics. This study aims to prepare a DBM/CS composite bone graft material in a moldable putty form without compromising the peculiar properties of DBM and CS.

View Article and Find Full Text PDF

Background: This study aimed to assess the surgical outcomes of two kinds of demineralized bone matrix (DBM) putties/local autograft composites in instrumented posterolateral lumbar fusion (PLF).

Methods: Twenty-seven fusion segments of 19 patients, who underwent decompression and instrumented PLF for lumbar spinal stenosis or degenerative spondylolisthesis less than grade 1, were included in this study. The PLF mass consisted of different two kinds of DBMs (Grafton® and DBX®) and local autograft.

View Article and Find Full Text PDF

Demineralized bone matrix (DBM) is a widely used bone graft in spinal fusion. Most commercial DBMs are composed of demineralized bone particles (~125-800 microns) suspended in a carrier that provides improved handling but dilutes the osteoinductive component. DBM fibers (DBF) provide improved osteoconductivity and do not require a carrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!