The evolution of the floral homeotic genes has been characterized using phylogenetic and functional studies. It is possible to enhance these studies by comparing gene content and order between species to determine the evolutionary history of the regulatory genes. Here, we use a synteny-based approach to trace the evolution of the floral B- and C-function genes that are required for specification of the reproductive organs. Consistent with previous phylogenetic studies, we show that the euAP3-TM6 split occurred after the monocots and dicots diverged. The Arabidopsis TM6 and papaya euAP3 genes are absent from the respective genomes, and we have detected loci from which these genes were lost. These data indicate that either the TM6 or the euAP3 lineage genes can be lost without detriment to flower development. In contrast, PI is essential for male reproductive organ development; yet, contrary to predictions, complex genomic rearrangements have resulted in almost complete breakdown of synteny at the PI locus. In addition to showing the evolution of B-function genes through the prediction of ancestral loci, similar reconstructions reveal the origins of the C-function AG and PLE lineages in dicots, and show the shared ancestry with the monocot C-function genes. During our studies, we found that transposable elements (TEs) present in sequenced Antirrhinum genomic clones limited comparative studies. A pilot survey of the Antirrhinum data revealed that gene-rich regions contain an unusually high degree of TEs of very varied types, which will be an important consideration for future genome sequencing efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955736PMC
http://dx.doi.org/10.1093/molbev/msq156DOI Listing

Publication Analysis

Top Keywords

evolution floral
12
c-function genes
12
genes
9
floral homeotic
8
genes lost
8
studies
5
tracing evolution
4
c-function
4
homeotic c-function
4
genes genome
4

Similar Publications

Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.

View Article and Find Full Text PDF

Flower size evolution in the Southwest Pacific.

Ann Bot

January 2025

Division of BioInvasions, Global Change & Macroecology, University of Vienna, Austria.

Background And Aims: Despite accelerating interest in island evolution, the general evolutionary trajectories of island flowers remain poorly understood. In particular the island rule, which posits that small organisms become larger and large organisms to become smaller after island colonization, while tested in various plant traits, has never been tested in flower size. Here, we provide the first test for the island rule in flower size for animal- and wind-pollinated flowers, and the first evidence for generalized in-situ evolution of flower size on islands.

View Article and Find Full Text PDF

Seed production on native seed farms has increased to meet the rising demand for plant material for restoration. Although these propagation efforts are necessary for restoration, cultivating wild populations may also result in unintentional selection and elicit evolutionary changes that mimic crop domestication, essentially turning these efforts into artificial domestication experiments. Here, we investigated whether phenotypic and genomic changes associated with domestication occurred in the wildflower Clarkia pulchella Pursh (Onagraceae) by comparing the wild source populations to the farmed population after eight generations of cultivation.

View Article and Find Full Text PDF

Pollinators are thought to play a key role in driving incipient speciation within the angiosperms. However, the mechanisms underlying floral divergence in plants with generalist pollination systems, remains understudied. Brunsvigia gregaria displays significant geographical variation in floral traits and are visited by diverse pollinator communities.

View Article and Find Full Text PDF

Alpine areas are host to diverse plant communities that support ecosystems through structural and floral resources and persist through specialized adaptations to harsh high-elevation conditions. An ongoing question in these plant communities is whether composition is shaped by stochastic processes (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!